gru_compute_test.cc 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/cuda/gru_compute.h"

#include <gtest/gtest.h>

#include <memory>
#include <string>
#include <utility>
#include <vector>

#include "lite/api/test_helper.h"
#include "lite/utils/float16.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

class GRUTest : public ::testing::Test {
 protected:
  GRUTest()
      : batch_(12),
        frame_size_(128),
        activation_("tanh"),
        gate_activation_("sigmoid"),
        is_reverse_(false),
        origin_mode_(false),
        x_shape_({batch_, frame_size_ * 3}),
        w_shape_({frame_size_, frame_size_ * 3}),
        out_shape_({batch_, frame_size_}),
        lod_({{0, 4, 9, 12}}) {
    x_ref_.Resize(lite::DDim(x_shape_));
    x_gpu_.Resize(lite::DDim(x_shape_));
    x_ref_.set_lod(lod_);
    w_ref_.Resize(lite::DDim(w_shape_));
    w_gpu_.Resize(lite::DDim(w_shape_));
    auto x_ref_data = x_ref_.mutable_data<float>();
    auto w_ref_data = w_ref_.mutable_data<float>();
    for (int64_t i = 0; i < x_ref_.numel(); i++) {
      x_ref_data[i] = static_cast<float>(i % 10 * 0.2);
    }
    for (int64_t i = 0; i < w_ref_.numel(); i++) {
      w_ref_data[i] = static_cast<float>(i % 10 * 0.2);
    }

    out_ref_.Resize(lite::DDim(out_shape_));
    out_cpu_.Resize(out_ref_.dims());
    out_gpu_.Resize(out_ref_.dims());
    batch_gate_gpu_.Resize(lite::DDim(x_shape_));
    batch_hidden_gpu_.Resize(lite::DDim(out_shape_));
    batch_reset_hidden_gpu_.Resize(lite::DDim(out_shape_));
    RunBaseLine();
    InitParamAndContext();
  }

  void InitParamAndContext() {
    ctx_.reset(new KernelContext);
    cudaStreamCreate(&stream_);
    auto& context = ctx_->As<CUDAContext>();
    context.SetExecStream(stream_);
    param_.input = &x_gpu_;
    param_.weight = &w_gpu_;
    param_.gate_activation = gate_activation_;
    param_.activation = activation_;
    param_.is_reverse = is_reverse_;
    param_.origin_mode = origin_mode_;
    param_.hidden = &out_gpu_;
    param_.batch_gate = &batch_gate_gpu_;
    param_.batch_reset_hidden_prev = &batch_reset_hidden_gpu_;
    param_.batch_hidden = &batch_hidden_gpu_;
  }

  void InitFloatInput() {
    x_gpu_.Assign<float, lite::DDim, TARGET(kCUDA)>(x_ref_.data<float>(),
                                                    x_gpu_.dims());
    x_gpu_.set_lod(x_ref_.lod());
    w_gpu_.Assign<float, lite::DDim, TARGET(kCUDA)>(w_ref_.data<float>(),
                                                    w_gpu_.dims());
  }

  void RunBaseLine() {}

  int batch_, frame_size_;
  std::string activation_, gate_activation_;
  bool is_reverse_, origin_mode_;
  std::vector<int64_t> x_shape_, w_shape_, out_shape_;
  LoD lod_;
  lite::Tensor x_ref_, w_ref_, out_ref_;
  lite::Tensor x_gpu_, w_gpu_;
  lite::Tensor x_half_, w_half_;
  lite::Tensor batch_gate_gpu_;
  lite::Tensor batch_hidden_gpu_;
  lite::Tensor batch_reset_hidden_gpu_;
  lite::Tensor out_cpu_, out_gpu_;

  operators::GRUParam param_;
  std::unique_ptr<KernelContext> ctx_;
  cudaStream_t stream_;
};

TEST_F(GRUTest, TestFP32) {
  InitFloatInput();
  GRUCompute<float, PRECISION(kFloat)> kernel;
  kernel.SetParam(param_);
  kernel.SetContext(std::move(ctx_));

  for (int i = 0; i < FLAGS_warmup; ++i) {
    kernel.Launch();
    cudaDeviceSynchronize();
  }

  auto start = GetCurrentUS();
  kernel.PrepareForRun();
  for (int i = 0; i < FLAGS_repeats; ++i) {
    kernel.Run();
  }
  cudaDeviceSynchronize();
  auto duration = (GetCurrentUS() - start) / 1000.0;
  LOG(INFO) << "fp32, warmup: " << FLAGS_warmup
            << ", repeats: " << FLAGS_repeats << ", spend "
            << duration / FLAGS_repeats << " ms in average.";
}

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle