“e4169f517ed9baa95c525406a7df1eaffdd3f303”上不存在“doc/git@gitcode.net:paddlepaddle/Paddle.git”
bilinear_interp_image_compute.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class BilinearInterpImageCompute
    : public KernelLite<TARGET(kOpenCL),
                        PRECISION(kFP16),
                        DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::InterpolateParam;

  std::string doc() const override {
    return "BilinearInterp using cl::Image2D(ImageDefault/RGBA), kFP16";
  }

  void PrepareForRun() override {
    bilinear_interp_param_ = param_.get_mutable<param_t>();

    auto& context = ctx_->As<OpenCLContext>();
46 47 48 49
    context.cl_context()->AddKernel(kernel_func_name_,
                                    "image/bilinear_interp_kernel.cl",
                                    build_options_,
                                    time_stamp_);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
  }

  void Run() override {
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

    auto* x = bilinear_interp_param_->X;
    auto* out = bilinear_interp_param_->Out;
    float scale_h = 0.0;
    float scale_w = 0.0;
    auto out_dims = out->dims();
    auto in_dims = x->dims();

    if (bilinear_interp_param_->align_corners) {
      scale_h = (in_dims[2] - 1.0f) / (out_dims[2] - 1.0f);
      scale_w = (in_dims[3] - 1.0f) / (out_dims[3] - 1.0f);
    } else {
      scale_h = in_dims[2] / static_cast<float>(out_dims[2]);
      scale_w = in_dims[3] / static_cast<float>(out_dims[3]);
    }
    float align_delta = 0.0f;
    if (!bilinear_interp_param_->align_corners &&
        bilinear_interp_param_->align_mode == 0) {
      align_delta = 0.5f;
    }

    int in_h = in_dims[2];
    int in_w = in_dims[3];
    int out_h = out_dims[2];
    int out_w = out_dims[3];

82
#ifndef LITE_SHUTDOWN_LOG
83 84 85 86
    VLOG(4) << "x->target():" << TargetToStr(x->target());
    VLOG(4) << "out->target():" << TargetToStr(out->target());
    VLOG(4) << "x->dims():" << in_dims;
    VLOG(4) << "out->dims():" << out_dims;
87
#endif
88 89 90 91 92 93

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    auto* x_img = x->data<half_t, cl::Image2D>();

    auto* out_img = out->mutable_data<half_t, cl::Image2D>(
        out_image_shape["width"], out_image_shape["height"]);
94 95 96

#ifndef LITE_SHUTDOWN_LOG
    // VLOG(4) << "x_image: " << x_img;
97 98 99 100 101 102 103 104
    // VLOG(4) << "out_image: " << out_img;
    VLOG(4) << "out_image_shape[w,h]: " << out_image_shape["width"] << " "
            << out_image_shape["height"];

    VLOG(4) << "scale_h: " << scale_h << ", scale_w: " << scale_w
            << ", align_delta: " << align_delta;
    VLOG(4) << "in_h: " << in_h << ", in_w: " << in_w;
    VLOG(4) << "out_h: " << out_h << ", out_w: " << out_w;
105
#endif
106 107

    STL::stringstream kernel_key;
108
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
109 110 111 112 113 114 115 116
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int arg_idx = 0;
    auto default_work_size =
        DefaultWorkSize(out_dims,
                        DDim(std::vector<DDim::value_type>{
                            static_cast<int64_t>(out_image_shape["width"]),
                            static_cast<int64_t>(out_image_shape["height"])}));
117
#ifndef LITE_SHUTDOWN_LOG
118 119
    VLOG(4) << "default_work_size: " << default_work_size[0] << ", "
            << default_work_size[1] << ", " << default_work_size[2];
120
#endif
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    cl_int status = kernel.setArg(arg_idx++, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, scale_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, scale_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, align_delta);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, in_w);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_h);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(arg_idx++, out_w);
    CL_CHECK_FATAL(status);

    auto global_work_size =
        cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
                    static_cast<cl::size_type>(default_work_size[1]),
                    static_cast<cl::size_type>(default_work_size[2])};

145
    event_ = std::shared_ptr<cl::Event>(new cl::Event);
146 147 148 149 150 151 152 153 154
    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
155
#ifndef LITE_SHUTDOWN_LOG
156 157
    VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
            << global_work_size[1] << " " << global_work_size[2];
158
#endif
159 160 161 162 163 164
  }

 protected:
  param_t* bilinear_interp_param_{nullptr};
  std::string kernel_func_name_{"bilinear_interp"};
  std::string build_options_{"-DCL_DTYPE_half"};
165
  std::string time_stamp_{GetTimeStamp()};
166
  std::shared_ptr<cl::Event> event_{nullptr};
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;
REGISTER_LITE_KERNEL(bilinear_interp,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::BilinearInterpImageCompute,
                     ImageDefault)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();