test_yolo_api.cpp 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_MOBILE_FPGA
#define PADDLE_MOBILE_FPGA
#endif
#include <fstream>
#include <iostream>
#include "../../src/io/paddle_inference_api.h"

Z
zhangyang0701 已提交
22 23
using namespace paddle_mobile;        // NOLINT
using namespace paddle_mobile::fpga;  // NOLINT
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

static const char *g_image = "../images/yolo_test_txtimg/1.txt";
static const char *g_model = "../models/yolo_bn_l2_model/__model__";
static const char *g_param = "../models/yolo_bn_l2_model/model.params";

void readStream(std::string filename, float *buf) {
  std::ifstream in;
  in.open(filename, std::ios::in);
  if (!in.is_open()) {
    std::cout << "open File Failed." << std::endl;
    return;
  }
  int i = 0;
  while (!in.eof()) {
    in >> buf[i];
    i++;
  }
  in.close();
}

signed char float_to_int8(float fdata) {
  if (fdata < 0.0) {
    fdata -= 0.5;
  } else {
    fdata += 0.5;
  }
  return (signed char)fdata;
}
void quantize(float **data_in, int data_size) {
  float *tmp = *data_in;
Z
zhangyang0701 已提交
54
  signed char *tmp_data = (signed char *)fpga_malloc(data_size * sizeof(char));
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  for (int i = 0; i < data_size; i++) {
    tmp_data[i] = float_to_int8((*data_in)[i] + 128);
  }
  *data_in = (float *)tmp_data;  // NOLINT
  fpga_free(tmp);
}

void convert_to_chw(float **data_in, int channel, int height, int width,
                    float *data_tmp) {
  int64_t amount_per_side = width * height;
  for (int h = 0; h < height; h++) {
    for (int w = 0; w < width; w++) {
      for (int c = 0; c < channel; c++) {
        *(data_tmp + c * amount_per_side + width * h + w) = *((*data_in)++);
      }
    }
  }
}

void dump_stride_float(std::string filename, PaddleTensor input_tensor) {
  auto data_ptr = reinterpret_cast<float *>(input_tensor.data.data());
  int c = (input_tensor.shape)[1];
  int h = (input_tensor.shape)[2];
  int w = (input_tensor.shape)[3];
  int n = (input_tensor.shape)[0];
  float *data_tmp =
      reinterpret_cast<float *>(malloc(c * h * w * sizeof(float)));
  convert_to_chw(&data_ptr, c, h, w, data_tmp);
  std::ofstream out(filename.c_str());
  float result = 0;
  int datasize = abs(c * h * w * n);
  if (datasize == 0) {
    std::cout << "wrong dump data size" << std::endl;
    return;
  }
  for (int i = 0; i < datasize; i++) {
    result = data_tmp[i];
    out << result << std::endl;
  }
  out.close();
}

void dump_stride(std::string filename, PaddleTensor input_tensor) {
98
  if (input_tensor.dtypeid == type_id<float>().hash_code()) {
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    dump_stride_float(filename, input_tensor);
  } else {
    std::cout << "only support dumping float data" << std::endl;
  }
}

PaddleMobileConfig GetConfig() {
  PaddleMobileConfig config;
  config.precision = PaddleMobileConfig::FP32;
  config.device = PaddleMobileConfig::kFPGA;
  config.prog_file = g_model;
  config.param_file = g_param;
  config.thread_num = 1;
  config.batch_size = 1;
  config.optimize = true;
  config.lod_mode = true;
  config.quantification = false;
  return config;
}

int main() {
  open_device();
  PaddleMobileConfig config = GetConfig();
Z
zhangyang0701 已提交
122 123 124
  auto predictor =
      CreatePaddlePredictor<PaddleMobileConfig,
                            PaddleEngineKind::kPaddleMobile>(config);
125 126 127 128 129 130 131 132 133

  std::cout << "Finishing loading model" << std::endl;
  int img_length = 256 * 416 * 3;
  auto img = reinterpret_cast<float *>(fpga_malloc(img_length * sizeof(float)));
  readStream(g_image, img);

  std::cout << "Finishing initializing data" << std::endl;
  struct PaddleTensor t_img;
  // t_img.dtype = FLOAT32;
134
  // t_img.dtypeid = type_id<float>().hash_code();
135 136
  quantize(&img, img_length);
  t_img.dtype = INT8;
137
  t_img.dtypeid = type_id<int8_t>().hash_code();
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
  t_img.layout = LAYOUT_HWC;
  t_img.shape = std::vector<int>({1, 256, 416, 3});
  t_img.name = "Image information";
  // t_img.data.Reset(img, img_length * sizeof(float));
  t_img.data.Reset(img, img_length * sizeof(int8_t));
  predictor->FeedPaddleTensors({t_img});

  std::cout << "Finishing feeding data " << std::endl;

  predictor->Predict_From_To(0, -1);
  std::cout << "Finishing predicting " << std::endl;

  std::vector<PaddleTensor> v;        // No need to initialize v
  predictor->FetchPaddleTensors(&v);  // Old data in v will be cleared
  std::cout << "Output number is " << v.size() << std::endl;
  for (int fetchNum = 0; fetchNum < v.size(); fetchNum++) {
    std::string dumpName = "yolo_api_fetch_" + std::to_string(fetchNum);
    dump_stride(dumpName, v[fetchNum]);
  }
  return 0;
}