softmax_op.cc 5.3 KB
Newer Older
H
hong19860320 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/apu/bridges/graph.h"
#include "lite/kernels/apu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace apu {

int SoftmaxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto model = graph->model();
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[APU] Converting [" + op_type + "]";

  auto libHandle = graph->libHandle();
  LOAD_FUNCTIONS(libHandle, NeuronModel_addOperand, neuron_model_addOperand)
  LOAD_FUNCTIONS(
      libHandle, NeuronModel_setOperandValue, neuron_model_setOperandValue)
  LOAD_FUNCTIONS(libHandle, NeuronModel_addOperation, neuron_model_addOperation)

  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  CHECK_GE(x_dims.size(), 2UL);
  auto x_rank = x_dims.size();
  auto out_name = op_info->Output("Out").front();

  // Check output shape
  auto axis = op_info->GetAttr<int>("axis");
  if (axis < 0) {
    axis += x_rank;
  }

  float input_scale = 1.0f;
  float out_scale = 1.0f;
  if (op_info->HasAttr("enable_int8")) {
    if (op_info->GetAttr<bool>("enable_int8")) {
      if (op_info->HasAttr("input_scale"))
        input_scale = op_info->GetAttr<float>("input_scale");
      if (op_info->HasAttr("output_scale"))
        out_scale = op_info->GetAttr<float>("output_scale");
    } else {
      LOG(WARNING) << "Do not enable_int8";
      return FAILED;
    }
  } else {
    LOG(WARNING) << "Do not enable_int8";
    return FAILED;
  }

  // Check output scale
  NeuronOperandType xType;
  xType.type = NEURON_TENSOR_QUANT8_ASYMM;
  xType.scale = input_scale;
  xType.zeroPoint = 128;
  xType.dimensionCount = x_dims.size();
  std::vector<uint32_t> dims_x;
  for (int i = 0; i < x_dims.size(); i++) dims_x.push_back(x_dims[i]);
  xType.dimensions = &dims_x[0];
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    // input operand already exist
    x_node = graph->Get(x_name);
    VLOG(3) << "Graph has " << x_name << ",index: " << x_node->index();
  } else {
    // add input operand
    (*neuron_model_addOperand)(model, &xType);  // 0: input
    x_node = graph->Add(x_name, dims_x);
  }
  VLOG(3) << "input_scale size: " << input_scale
          << " ,x_dims size: " << x_dims.size() << " ,x_dims: " << x_dims;

  // Add beta operand
  std::vector<uint32_t> dims_int32 = {0};
  NeuronOperandType betaType;
  betaType.type = NEURON_FLOAT32;
  betaType.dimensionCount = 0;
  (*neuron_model_addOperand)(model, &betaType);  // 1: beta
  std::shared_ptr<Node> beta_node = nullptr;
  beta_node = graph->Add(x_name + "_beta", dims_int32);

  // Add axis operand
  NeuronOperandType axisType;
  axisType.type = NEURON_INT32;
  axisType.dimensionCount = 0;
  (*neuron_model_addOperand)(model, &axisType);  // 2: axis
  std::shared_ptr<Node> axis_node = nullptr;
  axis_node = graph->Add(x_name + "_axis", dims_int32);

  // Add out operand
  NeuronOperandType outType;
  outType.type = NEURON_TENSOR_QUANT8_ASYMM;
  outType.scale = out_scale / 127;
  outType.zeroPoint = 128;
  outType.dimensionCount = x_dims.size();
  outType.dimensions = &dims_x[0];
  (*neuron_model_addOperand)(model, &outType);  // 3: output
  std::shared_ptr<Node> out_node = nullptr;
  out_node = graph->Add(out_name, dims_x);
  VLOG(3) << "output_scale: " << out_scale;

  float beta_val[] = {1.0f};
  (*neuron_model_setOperandValue)(
      model, beta_node->index(), beta_val, sizeof(float) * 1);

  int32_t axis_val[1];
  axis_val[0] = axis;
  (*neuron_model_setOperandValue)(
      model, axis_node->index(), axis_val, sizeof(int32_t) * 1);
  std::vector<uint32_t> addInIndex = {
      x_node->index(), beta_node->index(), axis_node->index()};
  std::vector<uint32_t> addOutIndex = {out_node->index()};
  int neuron_errCode = (*neuron_model_addOperation)(model,
                                                    NEURON_SOFTMAX,
                                                    addInIndex.size(),
                                                    &addInIndex[0],
                                                    addOutIndex.size(),
                                                    &addOutIndex[0]);
  if (NEURON_NO_ERROR != neuron_errCode) {
    LOG(WARNING) << "Add op fail:" << op_type;
    return FAILED;
  }

  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace apu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(softmax,
                         kAPU,
                         paddle::lite::subgraph::apu::SoftmaxConverter);