test_rfcn.cpp 6.1 KB
Newer Older
J
jameswu2014 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <iostream>
#include "../test_helper.h"
#include "../test_include.h"

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif
#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
#endif

#include <string>

void readStream(std::string filename, char *buf) {
  std::ifstream in;
  in.open(filename, std::ios::in | std::ios::binary);
  if (!in.is_open()) {
    std::cout << "open File Failed." << std::endl;
    return;
  }

  in.seekg(0, std::ios::end);  // go to the end
  auto length = in.tellg();    // report location (this is the length)
  in.seekg(0, std::ios::beg);  // go back to the beginning
  in.read(buf, length);
  DLOG << length;
  in.close();
}

void convert_to_chw(int16_t **data_in, int channel, int height, int width,
                    int num, int16_t *data_tmp) {
  int64_t amount_per_side = width * height;
  for (int n = 0; n < num; n++) {
    for (int h = 0; h < height; h++) {
      for (int w = 0; w < width; w++) {
        for (int c = 0; c < channel; c++) {
          *(data_tmp + n * amount_per_side * channel + c * amount_per_side +
            width * h + w) = *((*data_in)++);
        }
      }
    }
  }
}

void dump_stride_half(std::string filename, Tensor input_tensor,
                      const int dumpnum, bool use_chw) {
  // bool use_chw = true;
  if (input_tensor.dims().size() != 4) return;
  int c = (input_tensor.dims())[1];
  int h = (input_tensor.dims())[2];
  int w = (input_tensor.dims())[3];
  int n = (input_tensor.dims())[0];
  auto data_ptr = input_tensor.get_data();
  auto *data_ptr_16 = reinterpret_cast<half *>(data_ptr);
  auto data_tmp = data_ptr_16;
  if (use_chw) {
    data_tmp =
        reinterpret_cast<half *>(malloc(n * c * h * w * sizeof(int16_t)));
    convert_to_chw(&data_ptr_16, c, h, w, n, data_tmp);
  }
  std::ofstream out(filename.c_str());
  float result = 0;
  int stride = input_tensor.numel() / dumpnum;
  stride = stride > 0 ? stride : 1;
  for (int i = 0; i < input_tensor.numel(); i += stride) {
    result = paddle_mobile::fpga::fp16_2_fp32(data_tmp[i]);
    out << result << std::endl;
  }
  out.close();
  if (data_tmp != data_ptr_16) {
    free(data_tmp);
  }
}

void dump_stride_float(std::string filename, Tensor input_tensor,
                       const int dumpnum) {
  auto data_ptr = reinterpret_cast<float *>(input_tensor.get_data());
  std::ofstream out(filename.c_str());
  float result = 0;
  int stride = input_tensor.numel() / dumpnum;
  stride = stride > 0 ? stride : 1;
  for (int i = 0; i < input_tensor.numel(); i += stride) {
    result = data_ptr[i];
    out << result << std::endl;
  }
  out.close();
}

void dump_stride(std::string filename, Tensor input_tensor, const int dumpnum,
                 bool use_chw) {
  static int i = 0;
  if (input_tensor.numel() == 0) {
    return;
  }
  if (input_tensor.type() == typeid(float)) {
    DLOG << "op: " << i++ << ", float data  " << input_tensor.numel();

    dump_stride_float(filename, input_tensor, dumpnum);
  } else {
    DLOG << "op: " << i++ << ", half data  " << input_tensor.numel();

    dump_stride_half(filename, input_tensor, dumpnum, use_chw);
  }
  DLOG << "dump input address: " << input_tensor.get_data();
}

static const char *g_rfcn_combine = "../models/rfcn";
static const char *g_image_src_float = "../models/rfcn/data.bin";
int main() {
  paddle_mobile::fpga::open_device();
  paddle_mobile::PaddleMobile<paddle_mobile::FPGA> paddle_mobile;

  if (paddle_mobile.Load(std::string(g_rfcn_combine) + "/model",
                         std::string(g_rfcn_combine) + "/params", true, false,
                         1, true)) {
    float img_info[3] = {768, 1536, 768.0f / 960.0f};
    auto img = reinterpret_cast<float *>(
        fpga::fpga_malloc(768 * 1536 * 3 * sizeof(float)));
    readStream(g_image_src_float, reinterpret_cast<char *>(img));

    std::vector<void *> v(3, nullptr);
    paddle_mobile.FeedData({img_info, img});
    paddle_mobile.Predict_To(-1);

    for (int i = 55; i < 69; i++) {
      auto tensor_ptr = paddle_mobile.FetchResult(i);
      std::string saveName = "rfcn_" + std::to_string(i);
      // if(i != 58)
      paddle_mobile::fpga::fpga_invalidate((*tensor_ptr).get_data(),
                                           tensor_ptr->numel() * sizeof(float));
      //                                   tensor_ptr->numel() * sizeof(float));
      if ((i == 48) || (i == 47)) {
        dump_stride(saveName, (*tensor_ptr), 20,
                    false);  // 20);//tensor_ptr->numel());
      } else if (i == 55) {
        dump_stride(saveName, (*tensor_ptr), tensor_ptr->numel(),
                    true);  // 20);//tensor_ptr->numel());
      } else {
        dump_stride(saveName, (*tensor_ptr), tensor_ptr->numel(),
                    true);  // 20);//tensor_ptr->numel());
      }
      /*    float result = 0;
          std::string str = "softmax_input_data";
          float* data =
         static_cast<float*>(fpga::fpga_malloc(tensor_ptr->numel() *
         sizeof(float))); str = "softmax_output_data"; auto output_ptr =
         static_cast<half*>((*tensor_ptr).get_data()); for (int idx = 0; idx <
         tensor_ptr->numel(); ++idx)
          {
              data[idx] = fpga::fp16_2_fp32(output_ptr[idx]);
          }
          fpga::savefile<float>(str,data, tensor_ptr->numel(), result );   */
    }

    //   paddle_mobile.GetResults(&v);
    DLOG << "Computation done";
    fpga::fpga_free(img);
  }

  return 0;
}