elementwise_sub_image_compute.cc 6.6 KB
Newer Older
X
xiaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
// Copyright (c) 2019 PsublePsuble Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/opencl/elementwise_sub_image_compute.h"
#include <memory>
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/op_registry.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

void ElementwiseSubImageCompute::PrepareForRun() {
  ele_param_ = param_.get_mutable<param_t>();
  auto* x = ele_param_->X;
  auto* y = ele_param_->Y;
  auto axis = ele_param_->axis;

  if (y->dims().size() == 4) {
    kernel_func_name_ = "elementwise_sub";  // y: ImageDefault
  } else if (y->dims().size() == 1) {
    if (axis == x->dims().size() - 1) {
      kernel_func_name_ = "width_sub";  // y: ImageDefault
    } else if (axis == x->dims().size() - 3) {
      kernel_func_name_ = "channel_sub";  // y: ImageFolder
    } else {
      LOG(FATAL) << "ElementwiseSubImage doesn't support axis:" << axis
                 << ", x->dims().size():" << x->dims().size()
                 << ", y->dims.size():" << y->dims().size();
    }
  } else {
    LOG(FATAL) << "ElementwiseSubImage doesn't support axis:" << axis
               << ", x->dims().size():" << x->dims().size()
               << ", y->dims.size():" << y->dims().size();
  }
  VLOG(4) << "kernel_func_name_:" << kernel_func_name_;

  auto& context = ctx_->As<OpenCLContext>();
  context.cl_context()->AddKernel(
      kernel_func_name_, "image/elementwise_sub_kernel.cl", build_options_);
}

void ElementwiseSubImageCompute::Run() {
  auto& context = ctx_->As<OpenCLContext>();
  CHECK(context.cl_context() != nullptr);

  auto* x = ele_param_->X;
  auto* y = ele_param_->Y;
  auto* out = ele_param_->Out;
  auto axis = ele_param_->axis;

  VLOG(4) << "x->target():" << TargetToStr(x->target());
  VLOG(4) << "y->target():" << TargetToStr(y->target());
  VLOG(4) << "out->target():" << TargetToStr(out->target());
  VLOG(4) << "x->dims():" << x->dims();
  VLOG(4) << "y->dims():" << y->dims();
  VLOG(4) << "out->dims():" << out->dims();
  VLOG(4) << "axis:" << axis;

  paddle::lite::CLImageConverterDefault default_convertor;
  auto x_img_shape = default_convertor.InitImageDimInfoWith(x->dims());  // w, h
  auto x_img_width = x_img_shape[0];
  auto x_img_height = x_img_shape[1];
  auto out_img_shape =
      default_convertor.InitImageDimInfoWith(out->dims());  // w, h
  auto y_img_shape = default_convertor.InitImageDimInfoWith(y->dims());

  auto* x_img = x->data<half_t, cl::Image2D>();
  auto* y_img = y->data<half_t, cl::Image2D>();
  auto* out_img = out->mutable_data<half_t, cl::Image2D>(out_img_shape[0],
                                                         out_img_shape[1]);

  VLOG(4) << "x_img_shape[w,h]:" << x_img_width << " " << x_img_height;
  VLOG(4) << "y_img_shape[w,h]:" << y_img_shape[0] << " " << y_img_shape[1];
  VLOG(4) << "out_img_shape[w,h]:" << out_img_shape[0] << " "
          << out_img_shape[1];

  STL::stringstream kernel_key;
  kernel_key << kernel_func_name_ << build_options_;
  auto kernel = context.cl_context()->GetKernel(kernel_key.str());

  int arg_idx = 0;
  auto y_dims = y->dims();
  if (y_dims.size() == 4) {
    cl_int status = kernel.setArg(arg_idx, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *y_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_img);
    CL_CHECK_FATAL(status);
  } else if (y_dims.size() == 1) {
    if (axis == x->dims().size() - 1 || axis == x->dims().size() - 3) {
      int tensor_w = x->dims()[x->dims().size() - 1];
      VLOG(4) << "tensor_w:" << tensor_w;

      cl_int status = kernel.setArg(arg_idx, *x_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *y_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, *out_img);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(++arg_idx, static_cast<const int>(tensor_w));
      CL_CHECK_FATAL(status);
    } else {
      LOG(FATAL) << "ElementwiseSubImage doesn't support axis:" << axis
                 << ", x->dims().size():" << x->dims().size()
                 << ", y->dims.size():" << y->dims().size();
    }
  } else {
    LOG(FATAL) << "ElementwiseSubImage doesn't support axis:" << axis
               << ", x->dims().size():" << x->dims().size()
               << ", y->dims.size():" << y->dims().size();
  }

  auto global_work_size = cl::NDRange{static_cast<cl::size_type>(x_img_width),
                                      static_cast<cl::size_type>(x_img_height)};
  VLOG(4) << "global_work_size:[2D]:" << x_img_width << " " << x_img_height;
  auto status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
      kernel,
      cl::NullRange,
      global_work_size,
      cl::NullRange,
      nullptr,
      event_.get());
  CL_CHECK_FATAL(status);
  context.cl_wait_list()->emplace(out_img, event_);
}

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

namespace ocl = paddle::lite::kernels::opencl;

// TODO(ysh329): May need fix.
// "Y" may from constant value like conv bias (kARM, need do cl_image_converter
// on CPU);
//     may from anther branch like "X" (kOpenCL, nothing to do).
// Consider 2 situations have different actions when pass running(pick kernel),
//     set target of "Y" as kOpenCL temporarily.
REGISTER_LITE_KERNEL(elementwise_sub,
                     kOpenCL,
                     kFP16,
                     kImageDefault,
                     ocl::ElementwiseSubImageCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();