mul_grad_compute_test.cc 8.1 KB
Newer Older
M
mapingshuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/arm/mul_grad_compute.h"
#include <gtest/gtest.h>
#include "lite/core/op_registry.h"
#include "lite/kernels/arm/mul_compute.h"
#include "lite/tests/utils/fill_data.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

using param_t = operators::MulParam;
using grad_param_t = operators::MulGradParam;
using kernel_t = MulCompute;
using grad_kernel_t = MulGradCompute;

class MulGradTester {
 public:
  explicit MulGradTester(const DDim& x_dims,
                         const DDim& y_dims,
                         int x_num_col_dims,
                         int y_num_col_dims)
      : x_dims_(x_dims),
        y_dims_(y_dims),
        x_num_col_dims_(x_num_col_dims),
        y_num_col_dims_(y_num_col_dims) {}

  void prepare_kernel() {
    std::unique_ptr<KernelContext> ctx1(new KernelContext);
    ctx1->As<ARMContext>();
    kernel_.SetContext(std::move(ctx1));

    std::unique_ptr<KernelContext> ctx2(new KernelContext);
    ctx2->As<ARMContext>();
    delta_kernel_.SetContext(std::move(ctx2));

    std::unique_ptr<KernelContext> ctx3(new KernelContext);
    ctx3->As<ARMContext>();
    grad_kernel_.SetContext(std::move(ctx3));
  }

  void run_forward(param_t* param,
                   kernel_t* kernel,
                   const std::vector<float>& x_vec,
                   const std::vector<float>& y_vec,
                   float* out_vec) {
    Tensor x;
    Tensor y;
    Tensor output;
    x.Resize(x_dims_);
    y.Resize(y_dims_);
    output.Resize(DDim(out_dims_));
    auto* x_data = x.mutable_data<float>();
    auto* y_data = y.mutable_data<float>();
    for (int i = 0; i < x_dims_.production(); i++) {
      x_data[i] = x_vec[i];
    }
    for (int i = 0; i < y_dims_.production(); i++) {
      y_data[i] = y_vec[i];
    }

    param->x = &x;
    param->y = &y;
    param->output = &output;
    param->x_num_col_dims = x_num_col_dims_;
    param->y_num_col_dims = y_num_col_dims_;
    kernel->SetParam(*param);
    kernel->Launch();

    auto* output_data = output.mutable_data<float>();
    for (int i = 0; i < out_dims_.production(); i++) {
      out_vec[i] = output_data[i];
    }
  }

  void run_backward(grad_param_t* param,
                    grad_kernel_t* kernel,
                    const std::vector<float>& x_vec,
                    const std::vector<float>& y_vec,
                    const std::vector<float>& out_grad_vec,
                    float* x_grad_vec,
                    float* y_grad_vec) {
    Tensor x;
    Tensor x_grad;
    Tensor y;
    Tensor y_grad;
    Tensor out_grad;
    x.Resize(x_dims_);
    x_grad.Resize(x_dims_);
    y.Resize(y_dims_);
    y_grad.Resize(y_dims_);
    out_grad.Resize(out_dims_);
    auto* x_data = x.mutable_data<float>();
    auto* y_data = y.mutable_data<float>();
    auto* out_grad_data = out_grad.mutable_data<float>();
    for (int i = 0; i < x_dims_.production(); i++) {
      x_data[i] = x_vec[i];
    }
    for (int i = 0; i < y_dims_.production(); i++) {
      y_data[i] = y_vec[i];
    }
    for (int i = 0; i < out_dims_.production(); i++) {
      out_grad_data[i] = out_grad_vec[i];
    }

    param->x = &x;
    param->x_grad = &x_grad;
    param->y = &y;
    param->y_grad = &y_grad;
    param->output_grad = &out_grad;
    param->x_num_col_dims = x_num_col_dims_;
    param->y_num_col_dims = y_num_col_dims_;
    kernel->SetParam(*param);
    kernel->Launch();

    auto* x_grad_data = x_grad.mutable_data<float>();
    auto* y_grad_data = y_grad.mutable_data<float>();
    for (int i = 0; i < x_dims_.production(); i++) {
      x_grad_vec[i] = x_grad_data[i];
    }
    for (int i = 0; i < y_dims_.production(); i++) {
      y_grad_vec[i] = y_grad_data[i];
    }
  }

  void check_grad() {
    std::vector<int64_t> out_shape;
    for (int i = 0; i < x_num_col_dims_; i++) {
      out_shape.push_back(x_dims_[i]);
    }
    for (int i = y_num_col_dims_; i < y_dims_.size(); i++) {
      out_shape.push_back(y_dims_[i]);
    }
    out_dims_ = DDim(out_shape);

    // forward
    std::vector<float> x(x_dims_.production());
    std::vector<float> y(y_dims_.production());
    std::vector<float> out(out_dims_.production());
    fill_data_rand(x.data(), -1.f, 1.f, x_dims_.production());
    fill_data_rand(y.data(), -1.f, 1.f, y_dims_.production());
    this->run_forward(&param_, &kernel_, x, y, out.data());

    // backward
    std::vector<float> out_grad(out_dims_.production());
    std::vector<float> x_grad(x_dims_.production());
    std::vector<float> y_grad(y_dims_.production());
    for (int i = 0; i < out_dims_.production(); i++) {
      out_grad[i] = 1.0;
    }
    this->run_backward(&grad_param_,
                       &grad_kernel_,
                       x,
                       y,
                       out_grad,
                       x_grad.data(),
                       y_grad.data());

    // get numeric gradient
    std::vector<float> x_delta(x_dims_.production());
    std::vector<float> y_delta(y_dims_.production());
    std::vector<float> out_delta(out_dims_.production());

    float delta = 0.001;
    float max_grad_delta = 0.005;
    for (int i = 0; i < x_dims_.production(); i++) {
      for (int j = 0; j < x_dims_.production(); j++) {
        if (i == j) {
          x_delta[j] = x[j] + delta;
        } else {
          x_delta[j] = x[j];
        }
      }
      this->run_forward(
          &delta_param_, &delta_kernel_, x_delta, y, out_delta.data());

      float sum = 0;
      for (int j = 0; j < out_dims_.production(); j++) {
        sum += (out_delta[j] - out[j]);
      }

      EXPECT_NEAR(x_grad[i], sum / delta, max_grad_delta);
    }

    for (int i = 0; i < y_dims_.production(); i++) {
      for (int j = 0; j < y_dims_.production(); j++) {
        y_delta[j] = i == j ? y[j] + delta : y[j];
      }
      this->run_forward(
          &delta_param_, &delta_kernel_, x, y_delta, out_delta.data());
      float sum = 0;
      for (int j = 0; j < out_dims_.production(); j++) {
        sum += out_delta[j] - out[j];
      }
209

M
mapingshuo 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
      EXPECT_NEAR(y_grad[i], sum / delta, max_grad_delta);
    }
  }

 private:
  DDim x_dims_;
  DDim y_dims_;
  DDim out_dims_;
  int x_num_col_dims_;
  int y_num_col_dims_;
  kernel_t kernel_;
  kernel_t delta_kernel_;
  grad_kernel_t grad_kernel_;
  param_t param_;
  param_t delta_param_;
  grad_param_t grad_param_;
};

void TestNormalCase(const std::vector<int64_t>& x_dims,
                    const std::vector<int64_t>& y_dims,
                    int x_num_col_dims,
                    int y_num_col_dims) {
  std::unique_ptr<MulGradTester> tester(new MulGradTester(
      DDim(x_dims), DDim(y_dims), x_num_col_dims, y_num_col_dims));

  tester->prepare_kernel();
236

M
mapingshuo 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
  tester->check_grad();
}

TEST(mul_grad_arm, compute) {
  LOG(INFO) << "Test Mul grad";
  DeviceInfo::Init();
  TestNormalCase({1, 3}, {3, 2}, 1, 1);
  TestNormalCase({3, 2}, {2, 1}, 1, 1);
  TestNormalCase({3, 1}, {1, 7}, 1, 1);
  TestNormalCase({2, 3}, {3, 2}, 1, 1);
  TestNormalCase({4, 5}, {5, 4}, 1, 1);
  TestNormalCase({4, 5}, {5, 4, 3, 2}, 1, 1);
  TestNormalCase({3, 4}, {2, 2, 3}, 1, 2);
  TestNormalCase({4, 20}, {5, 4, 3, 2}, 1, 2);
  TestNormalCase({4, 60}, {5, 4, 3, 2}, 1, 3);
  TestNormalCase({2, 3, 4, 5}, {60, 4}, 1, 1);
  TestNormalCase({2, 3, 4, 5}, {20, 4}, 2, 1);
  TestNormalCase({2, 3, 4, 5}, {5, 4}, 3, 1);
  TestNormalCase({2, 3, 4, 5}, {60, 3, 4, 5}, 1, 1);
  TestNormalCase({2, 3, 4, 5}, {4, 5, 6, 2}, 2, 2);
  TestNormalCase({2, 3, 4, 5}, {5, 1, 4, 2}, 3, 2);
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle
USE_LITE_KERNEL(mul, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(mul_grad, kARM, kFloat, kNCHW, def);