lod_tensor.cc 8.7 KB
Newer Older
朔-望's avatar
朔-望 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "lod_tensor.h"
#include <algorithm>
#include <iterator>
L
liuruilong 已提交
18 19
#include <stdint.h>
#include <string.h>
朔-望's avatar
朔-望 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

namespace paddle_mobile {
namespace framework {

std::ostream &operator<<(std::ostream &os, const LoD &lod) {
  os << "{";
  for (auto &v : lod) {
    os << "{";
    bool is_first = true;
    for (auto &i : v) {
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
    }
    os << "}";
  }
  os << "}";

  return os;
}

std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
  //  PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code());

  //  if (!platform::is_cpu_place(t.place())) {
  //    LoDTensor tt;
  //    framework::TensorCopy(t, platform::CPUPlace(), &tt);
  //    platform::DeviceContextPool &pool =
  //    platform::DeviceContextPool::Instance(); auto &dev_ctx =
  //    *pool.Get(t.place()); dev_ctx.Wait();
  //
  //    os << tt;
  //    return os;
  //  }

  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
    os << t.data<float>()[i] << " ";
  }

  return os;
}

std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
                 size_t elem_end) {
  //  PADDLE_ENFORCE_LT(level, in.size());
  //  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
  }
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
    for (auto &ele : res[lvl]) {
      ele -= front;
    }
  }
  return res;
}

LoD ToAbsOffset(const LoD &in) {
  // the lowest level stores relative offsets
L
liuruilong 已提交
106 107
  if (in.empty() || in.size() == 1)
    return in;
朔-望's avatar
朔-望 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  LoD result = in;
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
    }
  }
  return result;
}

bool operator==(const LoD &a, const LoD &b) {
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
    const auto &a_level = a[i];
    const auto &b_level = b[i];
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
}

bool CheckLoD(const LoD &in, int tensor_height) {
L
liuruilong 已提交
139 140
  if (in.empty())
    return true;
朔-望's avatar
朔-望 已提交
141 142
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
L
liuruilong 已提交
143 144
    if (level.size() < 2)
      return false;
朔-望's avatar
朔-望 已提交
145
    // check: the first offset(the begin offset) of each level should be 0.
L
liuruilong 已提交
146 147
    if (level.front() != 0)
      return false;
朔-望's avatar
朔-望 已提交
148 149 150
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
L
liuruilong 已提交
151 152
          if (a < b)
            return true;
朔-望's avatar
朔-望 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
          return false;
        })) {
      std::cout << "ascending error";
      return false;
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
L
liuruilong 已提交
169 170
    if (in[level].back() != in[level + 1].size() - 1)
      return false;
朔-望's avatar
朔-望 已提交
171 172 173 174 175
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
L
liuruilong 已提交
176 177
  if (in.empty())
    return true;
朔-望's avatar
朔-望 已提交
178 179 180 181
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
L
liuruilong 已提交
182 183
          if (a < b)
            return true;
朔-望's avatar
朔-望 已提交
184 185 186 187 188 189
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
L
liuruilong 已提交
190 191
    if (level.size() < 2)
      return false;
朔-望's avatar
朔-望 已提交
192 193 194

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
L
liuruilong 已提交
195 196
    if (level.front() != 0)
      return false;
朔-望's avatar
朔-望 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;

LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    //    PADDLE_ENFORCE_LE(start_idx, end_idx);
    //    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
    sub_lod.emplace_back(level_lens);
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
}

void AppendLoD(LoD *lod, const LoD &lod_length) {
  //  PADDLE_ENFORCE(
  //      lod->empty() || lod->size() == lod_length.size(),
  //      "The lod_length should has the same size with the appended lod.");
  if (lod->empty()) {
    for (size_t i = 0; i < lod_length.size(); ++i) {
L
liuruilong 已提交
233
      lod->emplace_back(1, 0); // size = 1, value = 0;
朔-望's avatar
朔-望 已提交
234 235 236 237 238 239 240 241 242 243 244 245
    }
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
  for (size_t i = 0; i < lod->size(); ++i) {
    auto &level = (*lod)[i];
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

void SerializeToStream(std::ostream &os, const LoDTensor &tensor) {
L
liuruilong 已提交
246
  { // the 1st field, uint32_t version for LoDTensor
朔-望's avatar
朔-望 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char *>(&version), sizeof(version));
  }
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
  // the 3st field, Tensor
  TensorToStream(os, static_cast<Tensor>(tensor));
}

void DeserializeFromStream(std::istream &is, LoDTensor *tensor) {
  {
    // the 1st field, unit32_t version for LoDTensor
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    //    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
  }
  {
    // the 2st field, LoD information
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
  // the 3st filed, Tensor
  TensorFromStream(is, static_cast<Tensor *>(tensor));
}

L
liuruilong 已提交
297 298
} // namespace framework
} // namespace paddle_mobile