gru_compute.h 7.9 KB
Newer Older
L
lhl960107 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <string>
#include <vector>
#include "lite/backends/x86/math/blas.h"
#include "lite/backends/x86/math/detail/gru_cpu_kernel.h"
#include "lite/backends/x86/math/detail/gru_kernel.h"
#include "lite/backends/x86/math/gru_compute.h"
#include "lite/backends/x86/math/math_function.h"
#include "lite/backends/x86/math/sequence2batch.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/types.h"
#include "lite/fluid/eigen.h"

29 30
// DECLARE_int32(paddle_num_threads);
extern int32_t paddle_num_threads;
L
lhl960107 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

namespace paddle {
namespace lite {
namespace kernels {
namespace x86 {

using Tensor = lite::Tensor;

template <typename T>
inline void ReorderInitState(const lite::Context<TARGET(kX86)>& context,
                             const Tensor& src,
                             const std::vector<uint64_t>& index_lod,
                             Tensor* dst,
                             bool indexed_src) {
  lite::x86::math::CopyMatrixRowsFunctor<TARGET(kX86), T> row_shuffle;
  dst->Resize(src.dims());
  dst->mutable_data<T>();
  row_shuffle(context, src, index_lod, dst, indexed_src);
}

template <typename T>
class GRUCompute : public KernelLite<TARGET(kX86), PRECISION(kFloat)> {
 public:
  void Run() override {
    auto& context = ctx_->As<X86Context>();
    auto& param = *param_.get_mutable<operators::GRUParam>();

    bool origin_mode = param.origin_mode;
    bool is_reverse = param.is_reverse;

    auto* input = param.input;
    auto* h0 = param.h0;
    auto* weight = param.weight;
    const T* weight_data = weight->data<T>();
    auto* bias = param.bias;

    auto* batch_gate = param.batch_gate;
    batch_gate->mutable_data<T>();
    auto* batch_reset_hidden_prev = param.batch_reset_hidden_prev;
    batch_reset_hidden_prev->mutable_data<T>();
    auto* batch_hidden = param.batch_hidden;
    batch_hidden->mutable_data<T>();
    auto* hidden = param.hidden;
    hidden->mutable_data<T>();

    auto hidden_dims = hidden->dims();

    lite::x86::math::LoDTensor2BatchFunctor<TARGET(kX86), T> to_batch;
    to_batch(context, *input, batch_gate, true, is_reverse);

    if (bias) {
      lite::x86::math::RowwiseAdd<TARGET(kX86), T> add_bias;
      add_bias(context, *batch_gate, *bias, batch_gate);
    }

    int frame_size = hidden_dims[1];
    lite::x86::math::GRUMetaValue<T> gru_value;
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
    Tensor ordered_h0;

    std::vector<size_t> order(batch_gate->lod()[2]);

    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<T>(context, *h0, order, &ordered_h0, true);
      gru_value.prev_out_value = ordered_h0.mutable_data<T>();
    } else {
      gru_value.prev_out_value = nullptr;
    }
    auto batch_starts = batch_gate->lod()[0];
    size_t seq_len = batch_starts.size() - 1;
    auto active_node =
        lite::x86::math::detail::GetActivationType(param.activation);
    auto active_gate =
        lite::x86::math::detail::GetActivationType(param.gate_activation);

#ifdef PADDLE_WITH_MKLML
    // use MKL packed to speedup GEMM
113
    if (paddle_num_threads >= 4) {
L
lhl960107 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
      auto blas = lite::x86::math::GetBlas<TARGET(kX86), T>(context);
      T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix,
                                       1 /*height of C*/,
                                       frame_size * 2 /*width of weight*/,
                                       frame_size /*height of height*/);
      CHECK(packed_gate);
      blas.GEMM_PACK(CblasBMatrix,
                     CblasNoTrans,
                     1 /*cur bs?*/,
                     frame_size * 2,
                     frame_size,
                     T(1.0),
                     gru_value.gate_weight,
                     frame_size * 2,
                     packed_gate);
      T* packed_state = blas.GEMM_ALLOC(CblasBMatrix,
                                        1 /*height of C*/,
                                        frame_size /*width of weight*/,
                                        frame_size /*height of height*/);
      CHECK(packed_state);
      blas.GEMM_PACK(CblasBMatrix,
                     CblasNoTrans,
                     1 /*cur bs?*/,
                     frame_size,
                     frame_size,
                     T(1.0),
                     gru_value.state_weight,
                     frame_size,
                     packed_state);
      for (size_t n = 0; n < seq_len; n++) {
        int64_t bstart = static_cast<int64_t>(batch_starts[n]);
        int64_t bend = static_cast<int64_t>(batch_starts[n + 1]);
        int64_t cur_batch_size = bend - bstart;

        Tensor gate_t = batch_gate->Slice<T>(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice<T>(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice<T>(bstart, bend);
        gru_value.output_value = hidden_t.mutable_data<T>();
        gru_value.gate_value = gate_t.mutable_data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.mutable_data<T>();

        if (gru_value.prev_out_value) {
          blas.GEMM_COMPUTE(CblasNoTrans,
                            CblasPacked,
                            cur_batch_size,
                            frame_size * 2,
                            frame_size,
                            gru_value.prev_out_value,
                            frame_size,
                            packed_gate,
                            frame_size * 2,
                            T(1),
                            gru_value.gate_value,
                            frame_size * 3);
        }

        lite::x86::math::detail::forward_final_output(
            lite::x86::math::detail::forward::gru_finalOutput<T>(),
            gru_value,
            frame_size,
            cur_batch_size,
            active_node,
            origin_mode);

        gru_value.prev_out_value = gru_value.output_value;
      }

      blas.GEMM_FREE(packed_gate);
      blas.GEMM_FREE(packed_state);
    } else {
#endif
      for (size_t n = 0; n < seq_len; n++) {
        int64_t bstart = static_cast<int64_t>(batch_starts[n]);
        int64_t bend = static_cast<int64_t>(batch_starts[n + 1]);
        int64_t cur_batch_size = bend - bstart;

        Tensor gate_t = batch_gate->Slice<T>(bstart, bend);
        Tensor reset_hidden_prev_t =
            batch_reset_hidden_prev->Slice<T>(bstart, bend);
        Tensor hidden_t = batch_hidden->Slice<T>(bstart, bend);
        gru_value.output_value = hidden_t.mutable_data<T>();
        gru_value.gate_value = gate_t.mutable_data<T>();
        gru_value.reset_output_value = reset_hidden_prev_t.mutable_data<T>();

        lite::x86::math::GRUUnitFunctor<TARGET(kX86), T>::compute(
            context,
            gru_value,
            frame_size,
            cur_batch_size,
            active_node,
            active_gate,
            origin_mode);

        gru_value.prev_out_value = gru_value.output_value;
      }
#ifdef PADDLE_WITH_MKLML
    }
#endif
    lite::x86::math::Batch2LoDTensorFunctor<TARGET(kX86), T> to_seq;
    batch_hidden->set_lod(batch_gate->lod());
    to_seq(context, *batch_hidden, hidden);
  }
};

}  // namespace x86
}  // namespace kernels
}  // namespace lite
}  // namespace paddle