maxouting.cc 3.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "lite/backends/x86/math/maxouting.h"
Y
Yan Chunwei 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

namespace paddle {
namespace lite {
namespace x86 {
namespace math {

// All tensors are in NCHW format, and the groups must be greater than 1
template <typename T>
class MaxOutFunctor<lite::TargetType::kX86, T> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& input,
                  lite::Tensor* output,
                  int groups) {
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output->dims()[1];
    int fea_size = input_height * input_width;
    // c_size means the output size of each sample
    int c_size = fea_size * output_channels;
    const T* input_data = input.data<T>();
    T* output_data = output->mutable_data<T>(lite::TargetType::kX86);

    for (int i = 0; i < batch_size; ++i) {
      int new_bindex = c_size * i;
      for (int c = 0; c < output_channels; ++c) {
        int new_cindex = fea_size * c;
        for (int f = 0; f < fea_size; ++f) {
          T ele = static_cast<T>(-FLT_MAX);
          for (int ph = 0; ph < groups; ++ph) {
            T x = input_data[(new_bindex + new_cindex) * groups +
                             ph * fea_size + f];
            ele = ele > x ? ele : x;
          }
          output_data[(new_bindex + new_cindex + f)] = ele;
        }
      }
    }
  }
};

template <class T>
class MaxOutGradFunctor<lite::TargetType::kX86, T> {
 public:
  void operator()(const lite::X86Context& context,
                  const lite::Tensor& input,
                  lite::Tensor* input_grad,
                  const lite::Tensor& output,
                  const lite::Tensor& output_grad,
                  int groups) {
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    int fea_size = input_height * input_width;
    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(lite::TargetType::kX86);

    for (int i = 0; i < batch_size; ++i) {
      int blen = fea_size * output_channels * i;
      for (int c = 0; c < output_channels; ++c) {
        int clen = fea_size * c;
        for (int f = 0; f < fea_size; ++f) {
          int input_idx0 = (blen + clen) * groups + f;
          bool continue_match = true;
          int output_idx = blen + clen + f;
          for (int g = 0; g < groups && continue_match; ++g) {
            int input_idx = input_idx0 + fea_size * g;
            if (input_data[input_idx] == output_data[output_idx]) {
              input_grad_data[input_idx] += output_grad_data[output_idx];
              continue_match = false;
            }
          }
        }
      }
    }
  }
};

template class MaxOutGradFunctor<lite::TargetType::kX86, float>;
template class MaxOutGradFunctor<lite::TargetType::kX86, double>;
template class MaxOutFunctor<lite::TargetType::kX86, float>;
template class MaxOutFunctor<lite::TargetType::kX86, double>;

}  // namespace math
}  // namespace x86
}  // namespace lite
}  // namespace paddle