conv2d_transpose_compute_test.cc 15.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"

namespace paddle {
namespace lite {

inline bool is_a_ge_zero_and_a_lt_b(int a, int b) {
  return static_cast<unsigned>(a) < static_cast<unsigned>(b);
}

template <typename Dtype>
void col2im(const Dtype* data_col,
            const int channels,
            const int height,
            const int width,
            const int kernel_h,
            const int kernel_w,
            const int pad_h,
            const int pad_w,
            const int stride_h,
            const int stride_w,
            const int dilation_h,
            const int dilation_w,
            Dtype* data_im) {
  memset(data_im, 0, height * width * channels * sizeof(float));
  const int output_h =
      (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
  const int output_w =
      (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
  const int channel_size = height * width;
  for (int channel = channels; channel--; data_im += channel_size) {
    for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
      for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
        int input_row = -pad_h + kernel_row * dilation_h;
        for (int output_rows = output_h; output_rows; output_rows--) {
          if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {
            data_col += output_w;
          } else {
            int input_col = -pad_w + kernel_col * dilation_w;
            for (int output_col = output_w; output_col; output_col--) {
              if (is_a_ge_zero_and_a_lt_b(input_col, width)) {
                data_im[input_row * width + input_col] += *data_col;
              }
              data_col++;
              input_col += stride_w;
            }
          }
          input_row += stride_h;
        }
      }
    }
  }
}

template <typename Dtype>
void fill_bias_relu(Dtype* tensor,
                    const Dtype* bias,
                    int channel,
                    int channel_size,
                    bool flag_bias,
                    bool flag_relu);

template <>
void fill_bias_relu<float>(float* tensor,
                           const float* bias,
                           int channel,
                           int channel_size,
                           bool flag_bias,
                           bool flag_relu) {
  float* data = tensor;
  if (flag_relu) {
    for (int j = 0; j < channel; ++j) {
      float bias_data = flag_bias ? bias[j] : 0.f;
      for (int i = 0; i < channel_size; i++) {
        data[i] += bias_data;
        data[i] = data[i] > 0 ? data[i] : 0.f;
      }
      data += channel_size;
    }
  } else {
    for (int j = 0; j < channel; ++j) {
      float bias_data = flag_bias ? bias[j] : 0.f;
      for (int i = 0; i < channel_size; i++) {
        data[i] += bias_data;
      }
      data += channel_size;
    }
  }
}

template <typename type, typename type2>
static void basic_gemm(int m,
                       int n,
                       int k,
                       const type* a,
                       const type* b,
                       const type2* bias,
                       type2* c,
                       type2 alpha,
                       type2 beta,
                       bool trans_a = false,
                       bool trans_b = false,
                       bool flag_bias = false,
                       bool flag_relu = false) {
#pragma omp parallel for
  for (int i = 0; i < m; ++i) {
    type2 bias_data = (type2)0;
    if (flag_bias) {
      bias_data = bias[i];
    }
    for (int j = 0; j < n; ++j) {
      type2 sum = static_cast<type2>(0);
      for (int l = 0; l < k; ++l) {
        type av;
        type bv;
        if (trans_a) {
          av = a[l * m + i];
        } else {
          av = a[i * k + l];
        }
        if (trans_b) {
          bv = b[j * k + l];
        } else {
          bv = b[l * n + j];
        }
        sum += av * bv;
      }
      type2 tmp = alpha * sum + beta * c[i * n + j] + bias_data;
      if (flag_relu) {
        c[i * n + j] = tmp > (type2)0 ? tmp : (type2)0;
      } else {
        c[i * n + j] = tmp;
      }
    }
  }
}

//! for float, dtype1 and type2 is float
//! for int8, dytpe1 is char, dtype2 is int
template <typename Dtype1, typename Dtype2>
bool deconv_basic(const Dtype1* din,
                  Dtype2* dout,
                  int num,
                  int chout,
                  int hout,
                  int wout,
                  int chin,
                  int hin,
                  int win,
                  const Dtype1* weights,
                  const Dtype2* bias,
                  int group,
                  int kernel_w,
                  int kernel_h,
                  int stride_w,
                  int stride_h,
                  int dila_w,
                  int dila_h,
                  int pad_w,
                  int pad_h,
                  bool flag_bias,
                  bool flag_relu) {
  int m = chout * kernel_w * kernel_h / group;
  int n = hin * win;
  int k = chin / group;

  if (chin != chout || group != chin) {
    CHECK_OR_FALSE(chin % group == 0);
    CHECK_OR_FALSE(chout % group == 0);
  }
  lite::Tensor workspace_tensor;
  std::vector<int64_t> wt_shape = {1, 1, 1, group * m * n};
  workspace_tensor.Resize(wt_shape);
  auto* workspace_ptr = workspace_tensor.mutable_data<Dtype2>();

  int group_size_in = win * hin * chin / group;
  int group_size_out = wout * hout * chout / group;
  int group_size_coldata = m * n;
  int group_size_weights = chin * chout * kernel_w * kernel_h / (group * group);
  bool flag_1x1s1p1 = (kernel_w == 1) && (kernel_h == 1) && (stride_h == 1) &&
                      (stride_w == 1) && (pad_w == 1) && (pad_h == 1) &&
                      (dila_w == 1) && (dila_h == 1);

  for (int i = 0; i < num; ++i) {
    const Dtype1* din_batch = din + i * chin * hin * win;
    Dtype2* dout_batch = dout + i * chout * hout * wout;

    Dtype2* col_data = workspace_ptr;
    if (flag_1x1s1p1) {
      col_data = dout_batch;
    }
    memset(col_data, 0, sizeof(Dtype2) * group_size_coldata);
    for (int g = 0; g < group; ++g) {
      const Dtype1* din_group = din_batch + g * group_size_in;
      const Dtype1* weights_group = weights + g * group_size_weights;
      Dtype2* coldata_group = col_data + g * group_size_coldata;
      basic_gemm<Dtype1, Dtype2>(m,
                                 n,
                                 k,
                                 weights_group,
                                 din_group,
                                 nullptr,
                                 coldata_group,
                                 (Dtype2)1,
                                 (Dtype2)0,
                                 true,
                                 false,
                                 false,
                                 (!flag_bias && flag_relu));
    }
    if (!flag_1x1s1p1) {
      col2im(col_data,
             chout,
             hout,
             wout,
             kernel_h,
             kernel_w,
             pad_h,
             pad_w,
             stride_h,
             stride_w,
             dila_h,
             dila_w,
             dout_batch);
    }
    if (flag_bias) {
      fill_bias_relu(
          dout_batch, bias, chout, wout * hout, flag_bias, flag_relu);
    }
  }
  return true;
}

class Conv2DTransposeComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string x_ = "x";
  std::string output_ = "out";
  std::string filter_ = "filter";
  std::string bias_ = "bias";

  std::vector<int> strides_{1, 1};
  std::vector<int> paddings_{0, 0};
  int groups_{1};
  std::vector<int> dilations_{1, 1};
  bool flag_relu_{false};

  int n_ = 1;
  int ic_ = 1;
  int oc_ = 1;
  int ih_ = 9;
  int iw_ = 9;
  bool flag_bias_ = false;
  int ks_ = 1;

 public:
  Conv2DTransposeComputeTester(const Place& place,
                               const std::string& alias,
                               int n,
                               int ic,
                               int oc,
                               int ih,
                               int iw,
                               bool flag_bias,
                               bool flag_relu,
                               int dilation,
                               int stride,
                               int padding,
                               int ks,
                               int groups)
      : TestCase(place, alias) {
    n_ = n;
    ic_ = ic;
    oc_ = oc;
    ih_ = ih;
    iw_ = iw;
    ks_ = ks;
    flag_bias_ = flag_bias;

    strides_ = std::vector<int>({stride, stride});
    paddings_ = std::vector<int>({padding, padding});
    groups_ = groups;
    dilations_ = std::vector<int>({dilation, dilation});
    flag_relu_ = flag_relu;
  }

  void RunBaseline(Scope* scope) override {
    auto* out = scope->NewTensor(output_);
    CHECK(out);
    int oh = (ih_ - 1) * strides_[0] - 2 * paddings_[0] +
             dilations_[0] * (ks_ - 1) + 1;
    int ow = (iw_ - 1) * strides_[1] - 2 * paddings_[1] +
             dilations_[1] * (ks_ - 1) + 1;
    CHECK(oh > 0 || ow > 0);

    std::vector<int64_t> output_shape = {n_, oc_, oh, ow};
    DDim output_dims(output_shape);
    out->Resize(output_dims);
    auto* output_data = out->mutable_data<float>();

    auto* x = scope->FindTensor(x_);
    const auto* x_data = x->data<float>();
    auto* filter = scope->FindTensor(filter_);
    const auto* filter_data = filter->data<float>();
    const float* bias_data = nullptr;
    if (flag_bias_) {
      auto* bias = scope->FindTensor(bias_);
      bias_data = bias->data<float>();
    }

    deconv_basic<float, float>(x_data,
                               output_data,
                               n_,
                               oc_,
                               oh,
                               ow,
                               ic_,
                               ih_,
                               iw_,
                               filter_data,
                               bias_data,
                               groups_,
                               ks_,
                               ks_,
                               strides_[1],
                               strides_[0],
                               dilations_[1],
                               dilations_[0],
                               paddings_[1],
                               paddings_[0],
                               flag_bias_,
                               flag_relu_);
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("conv2d_transpose");
Y
Yan Chunwei 已提交
353 354 355
    op_desc->SetInput("Input", {x_});
    op_desc->SetInput("Filter", {filter_});
    op_desc->SetOutput("Output", {output_});
Y
Yan Chunwei 已提交
356 357 358 359 360
    op_desc->SetAttr("strides", strides_);
    op_desc->SetAttr("paddings", paddings_);
    op_desc->SetAttr("groups", groups_);
    op_desc->SetAttr("dilations", dilations_);
    if (flag_bias_) {
Y
Yan Chunwei 已提交
361
      op_desc->SetInput("Bias", {bias_});
Y
Yan Chunwei 已提交
362 363 364 365 366 367
    }
    op_desc->SetAttr("fuse_relu", flag_relu_);
  }

  void PrepareData() override {
    std::vector<int64_t> input_shape = {n_, ic_, ih_, iw_};
Y
Yan Chunwei 已提交
368
    std::vector<int64_t> filter_shape = {ic_, oc_ / groups_, ks_, ks_};
Y
Yan Chunwei 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    std::vector<int64_t> bias_shape = {1, oc_, 1, 1};

    // x tensor
    DDim x_dims(input_shape);
    std::vector<float> x_data(x_dims.production());
    for (int i = 0; i < x_dims.production(); i++) {
      float sign = i % 3 == 0 ? -1.0f : 1.0f;
      x_data[i] = sign * static_cast<float>(i % 128) * 0.013f + 0.001;
    }
    SetCommonTensor(x_, x_dims, x_data.data());

    // filter tensor
    DDim filter_dims(filter_shape);
    std::vector<float> filter_data(filter_dims.production());
    for (int i = 0; i < filter_dims.production(); i++) {
      float sign = i % 3 == 0 ? -1.0f : 1.0f;
      filter_data[i] = sign * static_cast<float>(i % 128) * 0.01f + 0.001;
    }
    SetCommonTensor(filter_, filter_dims, filter_data.data());

    // bias tensor
    if (flag_bias_) {
      DDim bias_dims(bias_shape);
      std::vector<float> bias_data(bias_dims.production());
      for (int i = 0; i < bias_dims.production(); i++) {
        float sign = i % 3 == 0 ? -1.0f : 1.0f;
        bias_data[i] = sign * static_cast<float>(i % 128) * 0.01f + 0.001;
      }
      SetCommonTensor(bias_, bias_dims, bias_data.data());
    }
  }
};

TEST(conv2d_transpose, precision) {
  LOG(INFO) << "test conv2d_transpose op";
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  for (auto n : {1, 2}) {
    for (auto ic : {1, 4 /*, 128*/}) {
      for (auto oc : {1, 4 /*, 128*/}) {
        LOG(INFO) << "n:" << n << ",ic:" << ic << ",oc:" << oc;
        for (auto ih : {8, 16 /*, 56 , 112, 224, 512*/}) {
          for (auto iw : {8, 16 /*, 56, 112, 224, 512*/}) {
            for (auto flag_bias : {false, true}) {
              for (auto flag_relu : {false, true}) {
                for (auto dilation : {1, 2}) {
                  for (auto stride : {1, 2}) {
                    for (auto padding : {0, 2}) {
                      for (auto ks : {2, 5}) {
                        for (auto group : {1, 2}) {
                          // obtain shape
                          // LOG(INFO) << "n:" << n << ",ic:" << ic << ",oc:" <<
                          // oc
                          //           << ",ih:" << ih << ",iw:" << iw
                          //           << ",flag_bias:" << flag_bias
                          //           << ",flag_relu:" << flag_relu
                          //           << ",dila:" << dilation
                          //           << ",stride:" << stride
                          //           << ",padding:" << padding << ",ks:" << ks
                          //           << ",group:" << group;
                          if (ic % group != 0 || oc % group != 0) {
                            group = 1;
                          }
                          std::unique_ptr<arena::TestCase> tester(
                              new Conv2DTransposeComputeTester(place,
                                                               "def",
                                                               n,
                                                               ic,
                                                               oc,
                                                               ih,
                                                               iw,
                                                               flag_bias,
                                                               flag_relu,
                                                               dilation,
                                                               stride,
                                                               padding,
                                                               ks,
                                                               group));
                          arena::Arena arena(std::move(tester), place, 2e-5);
                          arena.TestPrecision();
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
#endif
}

}  // namespace lite
}  // namespace paddle