conv_op.cc 6.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/conv_op.h"
#include "ai_ddk_lib/include/graph/buffer.h"
#include "ai_ddk_lib/include/graph/graph.h"
#include "ai_ddk_lib/include/graph/model.h"
#include "ai_ddk_lib/include/graph/op/all_ops.h"
#include "ai_ddk_lib/include/graph/operator.h"
#include "ai_ddk_lib/include/graph/operator_reg.h"
#include "lite/npu/bridge/registry.h"
#include "lite/npu/bridge/utils.h"

namespace paddle {
namespace lite {
namespace npu {
namespace bridge {

node_map_type ConvConverter(const std::shared_ptr<lite::OpLite> conv_op,
                            const node_map_type& inputs_map) {
  auto scope = conv_op->scope();
  auto op_info = conv_op->op_info();
  auto op_type = op_info->Type();
  auto unique_op_type = UniqueName(op_type);
Y
Yan Chunwei 已提交
36
  LOG(INFO) << "Converting " << op_type << "... ";
Y
Yan Chunwei 已提交
37

Y
Yan Chunwei 已提交
38
  // get input, filter and op attributes
Y
Yan Chunwei 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  auto input_var_name = op_info->Input("Input").front();
  auto input = scope->FindVar(input_var_name)->GetMutable<lite::Tensor>();
  auto input_dims = input->dims();
  auto filter_var_name = op_info->Input("Filter").front();
  auto filter = scope->FindVar(filter_var_name)->GetMutable<lite::Tensor>();
  auto filter_dims = filter->dims();
  CHECK_EQ(input_dims.size(), 4);
  CHECK_EQ(filter_dims.size(), 4);
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");
  auto groups = op_info->GetAttr<int>("groups");
  auto dilations = op_info->GetAttr<std::vector<int>>("dilations");
  auto fuse_relu = op_info->GetAttr<bool>("fuse_relu");
  CHECK_EQ(strides.size(), 2);
  CHECK_EQ(paddings.size(), 2);
  CHECK_EQ(dilations.size(), 2);

  // check depthwise mode, and decide whether use ConvolutionDepthwise Op
  bool use_depthwise_conv =
      false;  // whether use ge::op::ConvolutionDepthwise ?
  bool is_depthwise_mode = input_dims[1] == groups && filter_dims[0] == groups;
  if (is_depthwise_mode &&
      !((groups == 1 || groups >= 5) && dilations[0] == 1 &&
        dilations[1] == 1)) {
    use_depthwise_conv = true;
    LOG(WARNING) << "For depthwise mode, dilation = 1 and groups >= 5 (or "
                    "groups = 1) is only supported in "
                    "Convolution Op, so force to use ConvolutionDepthwise Op, "
                    "but may lead poor performance.";
  }

  // check input
  CHECK(inputs_map.count(input_var_name));
  OpList::Global().add(inputs_map.at(input_var_name));

  // create filter node
  CHECK(!inputs_map.count(filter_var_name));
  auto filter_const_node = std::make_shared<ge::op::Const>(filter_var_name);
  filter_const_node->set_attr_value(CvtFromLiteTensor(filter));
  OpList::Global().add(filter_const_node);

  // create bias node if has bias
  std::shared_ptr<ge::op::Const> bias_const_node = nullptr;
  if (HasInputArg(op_info, scope, "Bias")) {
    auto bias_var_name = op_info->Input("Bias").front();
    CHECK(!inputs_map.count(bias_var_name));
    auto* bias = scope->FindVar(bias_var_name)->GetMutable<lite::Tensor>();
    auto channel_size = bias->dims().production();
    CHECK_EQ(channel_size, filter_dims[0]);
    bias_const_node = std::make_shared<ge::op::Const>(bias_var_name);
Y
Yan Chunwei 已提交
89 90
    bias_const_node->set_attr_value(
        CvtFromLiteTensor(bias, {1, channel_size, 1, 1}));
Y
Yan Chunwei 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    OpList::Global().add(bias_const_node);
  }

  // create conv node and set input, filter, bias nodes and attributes
  std::shared_ptr<ge::Operator> conv_node = nullptr;
  if (use_depthwise_conv && is_depthwise_mode) {
    auto depthwise_conv_node =
        std::make_shared<ge::op::ConvolutionDepthwise>(unique_op_type);
    depthwise_conv_node->set_input_x(*inputs_map.at(input_var_name));
    depthwise_conv_node->set_input_filter(*filter_const_node);
    depthwise_conv_node->set_attr_mode(1);
    depthwise_conv_node->set_attr_algo(0);
    depthwise_conv_node->set_attr_format(0);    // NCHW
    depthwise_conv_node->set_attr_pad_mode(5);  // VALID
    depthwise_conv_node->set_attr_group(groups);
    depthwise_conv_node->set_attr_pad(ge::AttrValue::LIST_INT(
        {paddings[0], paddings[0], paddings[1], paddings[1]}));
    depthwise_conv_node->set_attr_dilation(
        ge::AttrValue::LIST_INT({dilations[0], dilations[1]}));
    depthwise_conv_node->set_attr_stride(
        ge::AttrValue::LIST_INT({strides[0], strides[1]}));
    depthwise_conv_node->set_attr_kernel(
        ge::AttrValue::LIST_INT({filter_dims[2], filter_dims[3]}));
    OpList::Global().add(depthwise_conv_node);
    conv_node = depthwise_conv_node;
    if (bias_const_node != nullptr) {
Y
Yan Chunwei 已提交
117 118 119 120 121
      auto add_node = std::make_shared<ge::op::Add>(unique_op_type + "/add");
      add_node->set_input_x1(*depthwise_conv_node);
      add_node->set_input_x2(*bias_const_node);
      OpList::Global().add(add_node);
      conv_node = add_node;
Y
Yan Chunwei 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    }
  } else {
    auto common_conv_node =
        std::make_shared<ge::op::Convolution>(unique_op_type);
    common_conv_node->set_input_x(*inputs_map.at(input_var_name));
    common_conv_node->set_input_w(*filter_const_node);
    common_conv_node->set_attr_mode(1);
    common_conv_node->set_attr_pad_mode(0);  // NOTSET
    common_conv_node->set_attr_group(groups);
    common_conv_node->set_attr_pad(ge::AttrValue::LIST_INT(
        {paddings[0], paddings[0], paddings[1], paddings[1]}));
    common_conv_node->set_attr_dilation(
        ge::AttrValue::LIST_INT({dilations[0], dilations[1]}));
    common_conv_node->set_attr_stride(
        ge::AttrValue::LIST_INT({strides[0], strides[1]}));
    common_conv_node->set_attr_kernel(
        ge::AttrValue::LIST_INT({filter_dims[2], filter_dims[3]}));
    if (bias_const_node != nullptr) {
      common_conv_node->set_input_b(*bias_const_node);
    }
    OpList::Global().add(common_conv_node);
    conv_node = common_conv_node;
  }
  CHECK(conv_node);

  node_map_type outputs_map;
  if (fuse_relu) {
    // append relu node if fuse_relu is true
    auto relu_node =
        std::make_shared<ge::op::Activation>(unique_op_type + "/relu");
    relu_node->set_input_x(*conv_node);
    relu_node->set_attr_mode(1);
    OpList::Global().add(relu_node);
Y
Yan Chunwei 已提交
155
    outputs_map[op_info->Output("Output").front()] = relu_node;
Y
Yan Chunwei 已提交
156
  } else {
Y
Yan Chunwei 已提交
157
    outputs_map[op_info->Output("Output").front()] = conv_node;
Y
Yan Chunwei 已提交
158 159 160 161 162 163 164 165 166 167 168
  }
  return outputs_map;
}

}  // namespace bridge
}  // namespace npu
}  // namespace lite
}  // namespace paddle

REGISTER_NPU_BRIDGE(conv2d, paddle::lite::npu::bridge::ConvConverter);
REGISTER_NPU_BRIDGE(depthwise_conv2d, paddle::lite::npu::bridge::ConvConverter);