bilinear_interp_op_test.cc 11.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
#include "lite/npu/bridge/registry.h"
#include "lite/npu/bridge/test_helper.h"
#include "lite/operators/interpolate_op.h"

namespace paddle {
namespace lite {
namespace npu {
namespace bridge {

template <typename DType>
void bilinear_interp_ref(const std::shared_ptr<operators::InterpolateOp> op) {
  auto scope = op->scope();
  auto op_info = op->op_info();
  auto x = scope->FindVar(op_info->Input("X").front())->GetMutable<Tensor>();
  auto out =
      scope->FindVar(op_info->Output("Out").front())->GetMutable<Tensor>();
  auto x_dims = x->dims();
  int batch_size = x_dims[0];
  int channel_size = x_dims[1];
  auto x_h = x_dims[2];
  auto x_w = x_dims[3];
  CHECK_EQ(x_dims.size(), 4);
  auto scale = op_info->GetAttr<float>("scale");
  auto out_w = op_info->GetAttr<int>("out_w");
  auto out_h = op_info->GetAttr<int>("out_h");
  auto align_corners = op_info->GetAttr<bool>("align_corners");
  int align_mode = op_info->GetAttr<int>("align_mode");
  auto interp_method = op_info->GetAttr<std::string>("interp_method");

  // calc real out_h and out_w
  if (scale > 0) {
    out_h = static_cast<int>(x_h * scale);
    out_w = static_cast<int>(x_w * scale);
  }
  if (op_info->HasInput("OutSize")) {
    auto out_size_var_names = op_info->Input("OutSize");
    if (out_size_var_names.size() > 0) {
      auto out_size_var_name = out_size_var_names.front();
      auto out_size =
          scope->FindVar(out_size_var_name)->GetMutable<lite::Tensor>();
      auto out_size_dims = out_size->dims();
      CHECK_EQ(out_size_dims.size(), 1);
      CHECK_EQ(out_size_dims.production(), 2);
      auto out_size_data = out_size->mutable_data<int>();
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    }
  }
  CHECK_GT(out_h, 0);
  CHECK_GT(out_w, 0);
  out->Resize({batch_size, channel_size, out_h, out_w});

  // copy from x if no change
  if (x_h == out_h && x_w == out_w) {
    out->CopyDataFrom(*x);
    return;
  }

  float ratio_h = 0.f;
  float ratio_w = 0.f;
  if (out_h > 1) {
    ratio_h = (align_corners) ? static_cast<float>(x_h - 1) / (out_h - 1)
                              : static_cast<float>(x_h) / out_h;
  }
  if (out_w > 1) {
    ratio_w = (align_corners) ? static_cast<float>(x_w - 1) / (out_w - 1)
                              : static_cast<float>(x_w) / out_w;
  }

  // naive bilinear interpolation
  auto x_data = x->mutable_data<DType>();
  auto out_data = out->mutable_data<DType>();
  bool align_flag = (align_mode == 0 && !align_corners);

  std::vector<int> vy_n, vy_s;
  std::vector<float> vd_n, vd_s;
  vy_n.reserve(out_h);
  vy_s.reserve(out_h);
  vd_n.reserve(out_h);
  vd_s.reserve(out_h);
  for (int k = 0; k < out_h; k++) {
    int yn = align_flag ? static_cast<int>(ratio_h * (k + 0.5) - 0.5)
                        : static_cast<int>(ratio_h * k);
    yn = (yn > 0) ? yn : 0;
    int ys = (yn + 1) < (x_h - 1) ? (yn + 1) : (x_h - 1);
    float idx_src_y = ratio_h * (k + 0.5) - 0.5;
    idx_src_y = (idx_src_y > 0) ? idx_src_y : 0;
    float dn = align_flag ? idx_src_y - yn : ratio_h * k - yn;
    float ds = 1.f - dn;
    {
      vy_n[k] = yn;
      vy_s[k] = ys;
      vd_n[k] = dn;
      vd_s[k] = ds;
    }
  }

  std::vector<int> vx_w, vx_e;
  std::vector<float> vd_w, vd_e;
  vx_w.reserve(out_w);
  vx_e.reserve(out_w);
  vd_w.reserve(out_w);
  vd_e.reserve(out_w);
  for (int l = 0; l < out_w; l++) {
    int xw = (align_mode == 0 && !align_corners)
                 ? static_cast<int>(ratio_w * (l + 0.5) - 0.5)
                 : static_cast<int>(ratio_w * l);
    xw = (xw > 0) ? xw : 0;
    int xe = (xw + 1) < (x_w - 1) ? (xw + 1) : (x_w - 1);
    float idx_src_x = ratio_w * (l + 0.5) - 0.5;
    idx_src_x = (idx_src_x > 0) ? idx_src_x : 0;
    float dw = align_flag ? idx_src_x - xw : ratio_w * l - xw;
    float de = 1.f - dw;
    {
      vx_w[l] = xw;
      vx_e[l] = xe;
      vd_w[l] = dw;
      vd_e[l] = de;
    }
  }

  std::vector<int64_t> x_strides(x_dims.size(), 1);
  for (int idx = x_strides.size() - 2; idx >= 0; idx--) {
    x_strides[idx] = x_strides[idx + 1] * x_dims[idx + 1];
  }
  for (int i = 0; i < batch_size; i++) {
    for (int j = 0; j < channel_size; j++) {
      for (int k = 0; k < out_h; k++) {
        for (int l = 0; l < out_w; l++) {
          DType x0 = x_data[i * x_strides[0] + j * x_strides[1] +
                            vy_n[k] * x_strides[2] + vx_w[l] * x_strides[3]];
          DType x1 = x_data[i * x_strides[0] + j * x_strides[1] +
                            vy_s[k] * x_strides[2] + vx_w[l] * x_strides[3]];
          DType x2 = x_data[i * x_strides[0] + j * x_strides[1] +
                            vy_n[k] * x_strides[2] + vx_e[l] * x_strides[3]];
          DType x3 = x_data[i * x_strides[0] + j * x_strides[1] +
                            vy_s[k] * x_strides[2] + vx_e[l] * x_strides[3]];
          *out_data = x0 * vd_s[k] * vd_e[l] + x1 * vd_n[k] * vd_e[l] +
                      x2 * vd_s[k] * vd_w[l] + x3 * vd_n[k] * vd_w[l];
          out_data++;
        }
      }
    }
  }
}

void test_bilinear_interp(int bs,
                          int ic,
                          int ih,
                          int iw,
                          int oh,
                          int ow,
                          float scale,
                          int out_size_h,
                          int out_size_w,
                          bool align_corners,
                          int align_mode) {
  // prepare input&output variables
  Scope scope;
  std::string x_var_name("x");
  std::string out_size_var_name("out_size");
  std::string out_var_name("out");
  std::string out_ref_var_name("out_ref");
  auto x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto out_size = scope.Var(out_size_var_name)->GetMutable<Tensor>();
  auto out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  x->Resize({bs, ic, ih, iw});
  out_size->Resize({2});

  // initialize input&output data
  FillTensor<float, int>(x);

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType("bilinear_interp");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("out_h", oh);
  opdesc.SetAttr("out_w", ow);
  opdesc.SetAttr("scale", scale);
  opdesc.SetAttr("align_corners", static_cast<bool>(align_corners));
  opdesc.SetAttr("align_mode", static_cast<int>(align_mode));
  opdesc.SetAttr("interp_method", std::string("bilinear"));
  if (out_size_h > 0 && out_size_w > 0) {
    auto out_size_dims = out_size->dims();
    CHECK_EQ(out_size_dims.size(), 1);
    CHECK_EQ(out_size_dims.production(), 2);
    auto out_size_data = out_size->mutable_data<int>();
    out_size_data[0] = out_size_h;
    out_size_data[1] = out_size_w;
    opdesc.SetInput("OutSize", {out_size_var_name});
  }

  // create op and execute reference implementation
  auto op = CreateOp<operators::InterpolateOp>(opdesc, &scope);
  bilinear_interp_ref<float>(op);
  out_ref->CopyDataFrom(*out);

  // convert op to NPU model, then run it on NPU
  LauchOp(op, {x_var_name}, {out_var_name});

  // compare results
  auto out_dims = out->dims();
  auto out_ref_dims = out_ref->dims();
  CHECK_EQ(out_dims.size(), out_ref_dims.size());
  for (int i = 0; i < out_dims.size(); i++) {
    CHECK_EQ(out_dims[i], out_ref_dims[i]);
  }
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    VLOG(5) << i;
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2f);
  }
}

TEST(NPUBridges, bilinear_interp) {
#if 1
  for (auto bs : {1, 3}) {
    for (auto ic : {3, 4}) {
      for (auto ih : {4, 5}) {
        for (auto iw : {3, 6}) {
          for (auto oh : {0, 3, 8}) {
            for (auto ow : {0, 4, 9}) {
              for (auto scale : {0.f, 0.5f, 0.6f, 2.0f, 2.2f}) {
                for (auto out_size_h : {0, 3, 11}) {
                  for (auto out_size_w : {0, 2, 12}) {
                    for (auto align_corners : {true, false}) {
                      for (auto align_mode : {0, 1}) {
                        int act_oh = 0, act_ow = 0;
                        if (out_size_h > 0 && out_size_w > 0) {
                          act_oh = out_size_h;
                          act_ow = out_size_w;
                        } else if (scale > 1e-5) {
                          act_oh = static_cast<int>(ih * scale);
                          act_ow = static_cast<int>(iw * scale);
                        } else if (oh > 0 && ow > 0) {
                          act_oh = oh;
                          act_ow = ow;
                        }
                        if (act_oh <= 0 || act_ow <= 0) {
                          continue;
                        }
                        // TODO(hong19860320) multiple=(ih*iw)/(oh*ow) should
                        // not exceed 7.0 in NPU DDK, delete the following lines
                        // if the limination is removed.
                        const float largest_multiple = 7.0f;
                        float multiple =
                            static_cast<float>(ih * iw) / (act_oh * act_ow);
                        if (multiple > largest_multiple) {
                          continue;
                        }
                        if (align_mode == 0 && !align_corners) {
                          continue;
                        }
                        VLOG(3)
                            << "bs: " << bs << " ic: " << ic << " ih: " << ih
                            << " iw: " << iw << " oh: " << oh << " ow: " << ow
                            << " scale: " << scale
                            << " out_size: " << out_size_h << "," << out_size_w
                            << " align_corners: " << align_corners
                            << " align_mode: " << align_mode;
                        test_bilinear_interp(bs,
                                             ic,
                                             ih,
                                             iw,
                                             oh,
                                             ow,
                                             scale,
                                             out_size_h,
                                             out_size_w,
                                             align_corners,
                                             align_mode);
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
#else
  test_bilinear_interp(3, 4, 5, 3, 8, 4, 0.6f, 3, 0, true, 0);
#endif
}

}  // namespace bridge
}  // namespace npu
}  // namespace lite
}  // namespace paddle

USE_LITE_OP(bilinear_interp);
USE_NPU_BRIDGE(bilinear_interp);