bilinear_interp_op.cc 4.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "ai_ddk_lib/include/graph/buffer.h"
#include "ai_ddk_lib/include/graph/graph.h"
#include "ai_ddk_lib/include/graph/model.h"
#include "ai_ddk_lib/include/graph/op/all_ops.h"
#include "ai_ddk_lib/include/graph/operator.h"
#include "ai_ddk_lib/include/graph/operator_reg.h"
#include "lite/npu/bridge/registry.h"
#include "lite/npu/bridge/utils.h"

namespace paddle {
namespace lite {
namespace npu {
namespace bridge {

node_map_type BilinearInterpConverter(
    const std::shared_ptr<lite::OpLite> interp_op,
    const node_map_type& inputs_map) {
  auto scope = interp_op->scope();
  auto op_info = interp_op->op_info();
  auto op_type = op_info->Type();
  auto unique_op_type = UniqueName(op_type);
  LOG(INFO) << "Converting " + op_type + "...";

  // get input, output and attributes from lite op
  auto x_var_name = op_info->Input("X").front();
  auto x = scope->FindVar(x_var_name)->GetMutable<lite::Tensor>();
  auto x_dims = x->dims();
  auto x_h = x_dims[2];
  auto x_w = x_dims[3];
  CHECK_EQ(x_dims.size(), 4);
  auto scale = op_info->GetAttr<float>("scale");
  auto out_w = op_info->GetAttr<int>("out_w");
  auto out_h = op_info->GetAttr<int>("out_h");
  auto align_corners = op_info->GetAttr<bool>("align_corners");
  auto interp_method = op_info->GetAttr<std::string>("interp_method");
  int align_mode = op_info->GetAttr<int>("align_mode");
  CHECK(!(align_mode == 0 && !align_corners))
      << "align_mode = 0 && align_corners = false isn't supported in NPU DDK";

  // priority: OutSize > scale > out_h/out_w
  if (scale > 0) {
    out_h = static_cast<int>(x_h * scale);
    out_w = static_cast<int>(x_w * scale);
    out_h = out_h > 0 ? out_h : -1;
    out_w = out_w > 0 ? out_w : -1;
  }

  // create interp node and set input node from inputs_map
  auto interp_node = std::make_shared<ge::op::ResizeBilinear>(unique_op_type);
  CHECK(inputs_map.count(x_var_name));
  interp_node->set_input_x(*inputs_map.at(x_var_name));
  OpList::Global().add(inputs_map.at(x_var_name));
  OpList::Global().add(interp_node);

  // update out_h and out_w if has OutSize
  bool is_dyn_out_size = false;
  if (HasInputArg(op_info, scope, "OutSize")) {
    auto out_size_var_name = op_info->Input("OutSize").front();
    if (!inputs_map.count(out_size_var_name)) {
      auto out_size =
          scope->FindVar(out_size_var_name)->GetMutable<lite::Tensor>();
      auto out_size_dims = out_size->dims();
      CHECK_EQ(out_size_dims.size(), 1);
      CHECK_EQ(out_size_dims.production(), 2);
      auto out_size_data = out_size->mutable_data<int>();
      // update out_h and out_w if has OutSize
      out_h = out_size_data[0];
      out_w = out_size_data[1];
    } else {
      interp_node->set_input_w(*inputs_map.at(out_size_var_name));
      OpList::Global().add(inputs_map.at(out_size_var_name));
      is_dyn_out_size = true;  // using dynamic output size
    }
  }
  if (!is_dyn_out_size) {
    CHECK_GT(out_h, 0);
    CHECK_GT(out_w, 0);
    const float largest_multiple = 7.0f;
    float multiple = static_cast<float>(x_h * x_w) / (out_h * out_w);
    CHECK_LT(multiple, largest_multiple)
        << "multiple=(ih*iw)/(oh*ow)=" << multiple
        << " is too large, should not exceed " << largest_multiple
        << " in NPU DDK";
    auto w_const_node = std::make_shared<ge::op::Const>(unique_op_type + "/w");
    w_const_node->set_attr_value(
        CreateTensorAndFillData(std::vector<int>({out_h, out_w})));
    interp_node->set_input_w(*w_const_node);
    OpList::Global().add(w_const_node);
  }

  // set attributes
  interp_node->set_attr_output_dim_mode(
      2);  // 0: zoom_factor, 1: shrink_factor, 2: height/width
  interp_node->set_attr_align_corners(align_corners);

  node_map_type outputs_map;
  outputs_map[op_info->Output("Out").front()] = interp_node;
  return outputs_map;
}

}  // namespace bridge
}  // namespace npu
}  // namespace lite
}  // namespace paddle

REGISTER_NPU_BRIDGE(bilinear_interp,
                    paddle::lite::npu::bridge::BilinearInterpConverter);