framework.nb.h 5.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "lite/model_parser/naive_buffer/naive_buffer.h"

namespace paddle {
namespace lite {
namespace naive_buffer {
namespace proto {

// Struct for framework
class OpDesc : public StructBuilder {
 public:
  // Move AttrType in OpDesc in NaiveBuffer
  enum AttrType {
    INT = 0,
    FLOAT,
    STRING,
    INTS,
    FLOATS,
    STRINGS,
    BOOLEAN,
    BOOLEANS,
    BLOCK,
    LONG,
    BLOCKS,
    LONGS
  };

  class Attr : public StructBuilder {
   public:
    explicit Attr(BinaryTable* table) : StructBuilder(table) {
      using enum_builder = EnumBuilder<AttrType>;

      NewStr("name");
      New<enum_builder>("type");
      NewInt32("i");
      NewFloat32("f");
      NewStr("s");
      New<ListBuilder<Int32Builder>>("ints");
      New<ListBuilder<Float32Builder>>("floats");
      New<ListBuilder<StringBuilder>>("strings");
      New<BoolBuilder>("b");
      New<ListBuilder<BoolBuilder>>("bools");
      NewInt32("block_idx");
      NewInt64("l");
      New<ListBuilder<Int32Builder>>("blocks_idx");
      New<ListBuilder<Int64Builder>>("longs");
    }
  };

  class Var : public StructBuilder {
   public:
    explicit Var(BinaryTable* table) : StructBuilder(table) {
      NewStr("parameter");
      New<ListBuilder<StringBuilder>>("arguments");
    }
  };

  explicit OpDesc(BinaryTable* table) : StructBuilder(table) {
    NewStr("type");
    New<ListBuilder<Var>>("inputs");
    New<ListBuilder<Var>>("outputs");
    New<ListBuilder<Attr>>("attrs");
    NewBool("is_target", false);
  }
};

enum VarDataType {
  // Pod Types
  BOOL = 0,
  INT16,
  INT32,
  INT64,
  FP16,
  FP32,
  FP64,
  // Tensor<size_t> is used in C++.
  SIZE_T,
  UINT8,
  INT8,

  // Other types that may need additional descriptions
  LOD_TENSOR,
  SELECTED_ROWS,
  FEED_MINIBATCH,
  FETCH_LIST,
  STEP_SCOPES,
  LOD_RANK_TABLE,
  LOD_TENSOR_ARRAY,
  PLACE_LIST,
  READER,
  // Any runtime decided variable type is raw
  // raw variables should manage their own allocations
  // in operators like nccl_op
  RAW,
  TUPLE
};

class TensorDesc : public StructBuilder {
 public:
  using enum_builder = EnumBuilder<VarDataType>;
  explicit TensorDesc(BinaryTable* table) : StructBuilder(table) {
    // Should only be PODType. Is enforced in C++
    New<enum_builder>("data_type");
    New<ListBuilder<Int64Builder>>("dims");
  }
};

class LoDTensorDesc : public StructBuilder {
 public:
  explicit LoDTensorDesc(BinaryTable* table) : StructBuilder(table) {
    New<TensorDesc>("tensor");
    NewInt32("lod_level", 0);
  }
};

class LoDTensorArrayDesc : public StructBuilder {
 public:
  explicit LoDTensorArrayDesc(BinaryTable* table) : StructBuilder(table) {
    New<TensorDesc>("tensor");
    NewInt32("lod_level", 0);
  }
};

class VarType : public StructBuilder {
 public:
  using Type = VarDataType;
  using enum_builder = EnumBuilder<Type>;
  using ReaderDesc = ListBuilder<LoDTensorDesc>;
  using Tuple = ListBuilder<enum_builder>;

  explicit VarType(BinaryTable* table) : StructBuilder(table) {
    New<enum_builder>("type");
    New<TensorDesc>("selected_rows");
    New<LoDTensorDesc>("lod_tensor");
    New<LoDTensorArrayDesc>("tensor_array");
    New<ReaderDesc>("reader");
    New<Tuple>("tuple");
  }
};

class VarDesc : public StructBuilder {
 public:
  explicit VarDesc(BinaryTable* table) : StructBuilder(table) {
    NewStr("name");
    New<VarType>("type");
    NewBool("persistable", false);
  }
};

class BlockDesc : public StructBuilder {
 public:
  explicit BlockDesc(BinaryTable* table) : StructBuilder(table) {
    NewInt32("idx");
    NewInt32("parent_idx");
    New<ListBuilder<VarDesc>>("vars");
    New<ListBuilder<OpDesc>>("ops");
    NewInt32("forward_block_idx", -1);
  }
};

class ProgramDesc : public StructBuilder {
 public:
  explicit ProgramDesc(BinaryTable* table) : StructBuilder(table) {
    New<ListBuilder<BlockDesc>>("blocks");
    NewInt64("version", 0);
  }
};

class ParamDesc : public StructBuilder {
 public:
  using lod_type = ListBuilder<ListBuilder<UInt64Builder>>;
  explicit ParamDesc(BinaryTable* table) : StructBuilder(table) {
Y
Yan Chunwei 已提交
188
    NewStr("name");
Y
Yan Chunwei 已提交
189 190 191 192 193 194 195 196 197
    NewUInt32("model_version");
    NewUInt64("lod_level");
    New<lod_type>("lod");
    NewUInt32("tensor_version");
    New<TensorDesc>("tensor_desc");
    New<ListBuilder<CharBuilder>>("data");
  }
};

Y
Yan Chunwei 已提交
198 199
using CombinedParamsDesc = ListBuilder<ParamDesc>;

Y
Yan Chunwei 已提交
200 201 202 203
}  // namespace proto
}  // namespace naive_buffer
}  // namespace lite
}  // namespace paddle