graph_compute.cc 5.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/npu/graph_compute.h"
#include <sys/time.h>
#include <time.h>
#include <string>
#include <vector>
#include "ai_ddk_lib/include/HiAiModelManagerService.h"
#include "lite/core/op_registry.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace npu {

void GraphCompute::PrepareForRun() {
  auto& ctx = this->ctx_->template As<NPUContext>();
  auto& param = this->Param<param_t>();

  exec_ = ctx.client(param.model_name);
  CHECK(exec_);
  int ret =
      exec_->GetModelIOTensorDim(param.model_name, npu_idims_, npu_odims_);
  CHECK_EQ(ret, hiai::AI_SUCCESS) << "[NPU] Get dims failed.";

  npu_itensors_.resize(npu_idims_.size());
  npu_otensors_.resize(npu_odims_.size());

  for (size_t i = 0; i < npu_idims_.size(); ++i) {
Y
Yan Chunwei 已提交
43 44 45 46
    VLOG(3) << "npu_idims[" << i << "]: " << npu_idims_[i].GetNumber() << ","
            << npu_idims_[i].GetChannel() << "," << npu_idims_[i].GetHeight()
            << "," << npu_idims_[i].GetWidth();
    VLOG(3) << "lite_idims[" << i << "]: " << param.inputs[i]->dims();
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54
    CHECK_EQ(param.inputs[i]->dims().production(),
             npu_idims_[i].GetNumber() * npu_idims_[i].GetChannel() *
                 npu_idims_[i].GetHeight() * npu_idims_[i].GetWidth());
    npu_itensors_[i].reset(new hiai::AiTensor);
    npu_itensors_[i]->Init(&(npu_idims_[i]));
  }

  for (size_t i = 0; i < npu_odims_.size(); ++i) {
Y
Yan Chunwei 已提交
55 56 57 58
    VLOG(3) << "npu_odims[" << i << "]: " << npu_odims_[i].GetNumber() << ","
            << npu_odims_[i].GetChannel() << "," << npu_odims_[i].GetHeight()
            << "," << npu_odims_[i].GetWidth();
    VLOG(3) << "lite_odims[" << i << "]: " << param.outputs[i]->dims();
Y
Yan Chunwei 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    auto out_size = npu_odims_[i].GetNumber() * npu_odims_[i].GetChannel() *
                    npu_odims_[i].GetHeight() * npu_odims_[i].GetWidth();
    if (param.outputs[i]->dims().production() != out_size) {
      param.outputs[i]->Resize({npu_odims_[i].GetNumber(),
                                npu_odims_[i].GetChannel(),
                                npu_odims_[i].GetHeight(),
                                npu_odims_[i].GetWidth()});
    }
    LOG(INFO) << param.outputs[i]->dims();
    npu_otensors_[i].reset(new hiai::AiTensor);
    npu_otensors_[i]->Init(&(npu_odims_[i]));
  }
}

bool GraphCompute::input_dims_changed() const {
  auto& param = this->Param<param_t>();
  CHECK_EQ(param.inputs.size(), npu_idims_.size());
  for (size_t i = 0; i < param.inputs.size(); ++i) {
    auto param_idims = param.inputs[i]->dims();
    CHECK(!param_idims.empty());
    CHECK_EQ(param_idims.size(), 4);
    std::vector<int> idims{static_cast<int>(npu_idims_[i].GetNumber()),
                           static_cast<int>(npu_idims_[i].GetChannel()),
                           static_cast<int>(npu_idims_[i].GetHeight()),
                           static_cast<int>(npu_idims_[i].GetWidth())};
    for (size_t i = 0; i < 4; ++i) {
      if (param_idims[i] != idims[i]) {
        return true;
      }
    }
  }

  return false;
}

void GraphCompute::Run() {
  CHECK(!input_dims_changed())
      << "When NPU is enabled, the input shape could not be changed yet.";
  auto& param = this->Param<param_t>();
  CHECK_EQ(param.inputs.size(), npu_itensors_.size());
  CHECK_EQ(param.outputs.size(), npu_otensors_.size());

  for (size_t i = 0; i < param.inputs.size(); ++i) {
    auto* itensor = param.inputs[i];
    CHECK(itensor);
    const auto* i_data = itensor->data<float>();
    std::memcpy(
        npu_itensors_[i]->GetBuffer(),
        i_data,
        sizeof(float) * static_cast<size_t>(itensor->dims().production()));
  }
  std::string key = "model_name";  // Note: key seems must be model_name
  npu_context_.AddPara(key, param.model_name);

  auto GetCurrentUS = []() -> double {
    struct timeval time;
    gettimeofday(&time, NULL);
    return 1e+6 * time.tv_sec + time.tv_usec;
  };
  int istamp;
  auto start_time = GetCurrentUS();
  CHECK_EQ(
      hiai::AI_SUCCESS,
      exec_->Process(npu_context_, npu_itensors_, npu_otensors_, 1000, istamp));
  LOG(INFO) << "[NPU] Process cost " << GetCurrentUS() - start_time << " us";

  for (size_t i = 0; i < param.outputs.size(); ++i) {
    auto* otensor = param.outputs[i];
    CHECK(otensor);
    auto* o_data = otensor->mutable_data<float>();
    auto* npu_obuffer = static_cast<float*>(npu_otensors_[i]->GetBuffer());

    std::memcpy(
        o_data,
        npu_obuffer,
        sizeof(float) * static_cast<size_t>(otensor->dims().production()));
  }
}

}  // namespace npu
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(graph_op,
                     kNPU,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::npu::GraphCompute,
                     def)
    .BindInput("Inputs", {LiteType::GetTensorTy(TARGET(kHost))})
    .BindOutput("Outputs", {LiteType::GetTensorTy(TARGET(kHost))})
    .Finalize();