softmax_compute_test.cc 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/cuda/softmax_compute.h"
#include <gtest/gtest.h>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

using Tensor = lite::Tensor;
using DDim = lite::DDim;

template <typename dtype>
static void softmax_compute_ref(const operators::SoftmaxParam& param) {
  const dtype* x_data = param.x->mutable_data<const dtype>();
  dtype* output_data = param.output->mutable_data<dtype>();
  DDim x_dims = param.x->dims();
  ASSERT_EQ(x_dims.data(), param.output->dims().data());
  auto x_rank = x_dims.size();
  int axis = param.axis;
  if (axis < 0) {
    axis += x_rank;
  }
  int axis_size = x_dims[axis];
  int outer_num = x_dims.Slice(0, axis).production();
  int inner_num = x_dims.Slice(axis + 1, x_rank).production();
  int compute_size = outer_num * inner_num;
  for (int i = 0; i < compute_size; i++) {
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int start = idx_outer * inner_num + idx_inner;
    int offset;

    offset = start;
    dtype max_data = std::numeric_limits<dtype>::lowest();
    for (int j = 0; j < axis_size; j++) {
      max_data = x_data[offset] > max_data ? x_data[offset] : max_data;
      offset += inner_num;
    }

    offset = start;
    dtype sum_data = (dtype)0;
    for (int j = 0; j < axis_size; j++) {
      output_data[offset] = exp(x_data[offset] - max_data);
      sum_data += output_data[offset];
      offset += inner_num;
    }

    offset = start;
    for (int j = 0; j < axis_size; j++) {
      output_data[offset] /= sum_data;
      offset += inner_num;
    }
  }
}

TEST(softmax_cuda, compute) {
  std::unique_ptr<KernelContext> ctx(new KernelContext);
  auto& context = ctx->As<CUDAContext>();
  cudaStream_t stream;
  cudaStreamCreate(&stream);
  context.SetExecStream(stream);

  SoftmaxCompute softmax;
  operators::SoftmaxParam param;
  softmax.SetContext(std::move(ctx));
  lite::Tensor x;
  lite::Tensor x_cpu;
  lite::Tensor output;
  lite::Tensor output_cpu;
  lite::Tensor output_ref;
  for (auto n : {1, 3}) {
    for (auto c : {1, 4}) {
      for (auto h : {5, 1, 112}) {
        for (auto w : {1, 6, 112}) {
          for (auto axis : {-2, -1, 0, 1, 2}) {
            x.Resize({n, c, h, w});
            x_cpu.Resize({n, c, h, w});
            output.Resize({n, c, h, w});
            output_cpu.Resize({n, c, h, w});
            output_ref.Resize({n, c, h, w});
            auto* x_cpu_data = x_cpu.mutable_data<float>();
            auto* output_data = output.mutable_data<float>(TARGET(kCUDA));
            auto* output_cpu_data = output_ref.mutable_data<float>();
            auto* output_ref_data = output_ref.mutable_data<float>();
            for (int i = 0; i < x.dims().production(); i++) {
              x_cpu_data[i] = i;
            }
            x.Assign<float, lite::DDim, TARGET(kCUDA)>(x_cpu_data,
                                                       x_cpu.dims());
            param.x = &x;
            param.axis = axis;
            param.output = &output;
            softmax.SetParam(param);
            softmax.Launch();
            param.x = &x_cpu;
            param.output = &output_ref;
            softmax_compute_ref<float>(param);
            cudaDeviceSynchronize();
            CopySync<TARGET(kCUDA)>(output_cpu_data,
                                    output_data,
                                    sizeof(float) * output.numel(),
                                    IoDirection::DtoH);
            for (int i = 0; i < output.dims().production(); i++) {
              EXPECT_NEAR(output_cpu_data[i], output_ref_data[i], 1e-5);
            }
          }
        }
      }
    }
  }
}
}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle