test_inceptionv4_lite_x86.cc 4.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/cxx_api.h"
#include "lite/api/lite_api_test_helper.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {

TEST(InceptionV4, test_inceptionv4_lite_x86) {
  lite::Predictor predictor;
46
  std::vector<Place> valid_places({Place{TARGET(kX86), PRECISION(kFloat)}});
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56

  //  LOG(INFO)<<"FLAGS_eval_googlenet_dir:"<<FLAGS_test_lite_googlenet_dir;
  std::string model_dir = FLAGS_model_dir;
  std::vector<std::string> passes({"static_kernel_pick_pass",
                                   "variable_place_inference_pass",
                                   "type_target_cast_pass",
                                   "variable_place_inference_pass",
                                   "io_copy_kernel_pick_pass",
                                   "variable_place_inference_pass",
                                   "runtime_context_assign_pass"});
57
  predictor.Build(model_dir, "", "", valid_places, passes);
Y
Yan Chunwei 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

  auto* input_tensor = predictor.GetInput(0);
  input_tensor->Resize(DDim(std::vector<DDim::value_type>({1, 3, 224, 224})));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < input_tensor->dims().production(); i++) {
    data[i] = 1;
  }

  for (int i = 0; i < FLAGS_warmup; ++i) {
    predictor.Run();
  }

  auto start = GetCurrentUS();
  for (int i = 0; i < FLAGS_repeats; ++i) {
    predictor.Run();
  }

  LOG(INFO) << "================== Speed Report ===================";
  LOG(INFO) << "Model: " << FLAGS_model_dir << ", warmup: " << FLAGS_warmup
            << ", repeats: " << FLAGS_repeats << ", spend "
            << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0
            << " ms in average.";

  std::vector<std::vector<float>> results;
  // i = 1
  results.emplace_back(std::vector<float>(
      {0.0011684548,  0.0010390386,  0.0011301535,  0.0010133048,
       0.0010259597,  0.0010982729,  0.00093195855, 0.0009141837,
       0.00096620916, 0.00089982944, 0.0010064574,  0.0010474789,
       0.0009782845,  0.0009230255,  0.0010548076,  0.0010974824,
       0.0010612885,  0.00089107914, 0.0010112736,  0.00097655767}));

  auto* out = predictor.GetOutput(0);
  ASSERT_EQ(out->dims().size(), 2);
  ASSERT_EQ(out->dims()[0], 1);
  ASSERT_EQ(out->dims()[1], 1000);

  int step = 50;
  for (int i = 0; i < results.size(); ++i) {
    for (int j = 0; j < results[i].size(); ++j) {
      EXPECT_NEAR(out->data<float>()[j * step + (out->dims()[1] * i)],
                  results[i][j],
                  1e-6);
    }
  }
}

}  // namespace lite
}  // namespace paddle