executor.cpp 13.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "io/executor.h"
W
wangliu 已提交
16
#include <operators/math/gemm.h>
D
dolphin8 已提交
17
#include <algorithm>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
W
wangliu 已提交
29 30 31
#ifdef _OPENMP
#include <omp.h>
#endif  // _OPENMP
D
dolphin8 已提交
32
#ifdef PADDLE_EXECUTOR_MULTITHREAD
D
dolphin8 已提交
33 34 35 36
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif
W
wangliu 已提交
37 38 39 40

namespace paddle_mobile {
using framework::Variable;

L
liuruilong 已提交
41 42
char *Get_binary_data(std::string filename) {
  FILE *file = fopen(filename.c_str(), "rb");
L
liuruilong 已提交
43 44
  PADDLE_MOBILE_ENFORCE(file != nullptr, "can't open file: %s ",
                        filename.c_str());
L
liuruilong 已提交
45
  fseek(file, 0, SEEK_END);
46
  int64_t size = ftell(file);
L
liuruilong 已提交
47 48 49 50
  PADDLE_MOBILE_ENFORCE(size > 0, "size is too small");
  rewind(file);
  char *data = new char[size];
  size_t bytes_read = fread(data, 1, size, file);
L
liuruilong 已提交
51 52
  PADDLE_MOBILE_ENFORCE(bytes_read == size,
                        "read binary file bytes do not match with fseek");
L
liuruilong 已提交
53 54
  fclose(file);
  return data;
W
wangliu 已提交
55 56 57 58
}

#pragma mark - executor
template <typename Dtype, Precision P>
L
liuruilong 已提交
59 60
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
                             bool use_optimize)
L
liuruilong 已提交
61
    : program_(p), batch_size_(batch_size), use_optimize_(use_optimize) {
W
wangliu 已提交
62 63 64 65 66 67 68 69 70
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }
  Variable *variable_ptr = program_.scope->Var("batch_size");
  variable_ptr[0].SetValue<int>(batch_size);
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
D
dolphin8 已提交
71 72 73
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  depManager.resize(blocks.size());
#endif
W
wangliu 已提交
74 75 76 77 78
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
L
liuruilong 已提交
79
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
80 81 82 83 84
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
      op_base->InferShape();
      ops_of_block_[*block_desc.get()].push_back(op_base);
D
dolphin8 已提交
85 86 87
#ifdef PADDLE_EXECUTOR_MULTITHREAD
      depManager[i].analysisDep(ops_of_block_[*block_desc.get()]);
#endif
W
wangliu 已提交
88 89
    }
  }
W
wangliu 已提交
90
  if (program_.combined) {
L
liuruilong 已提交
91 92 93 94
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
95 96

  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
97
      to_predict_program_->Block(0);
L
liuruilong 已提交
98
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
99
  for (const auto &op : ops) {
L
liuruilong 已提交
100 101
    op->Init();
  }
W
wangliu 已提交
102 103 104 105
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
106
                                    framework::LoDTensor *tensor, char **data) {
W
wangliu 已提交
107
  // 1. version
108 109 110
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);
W
wangliu 已提交
111 112

  // 2 Lod information
L
liuruilong 已提交
113
  uint64_t *lod_level_ptr = new uint64_t();
114
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
L
liuruilong 已提交
115 116
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
117
  (*data) += sizeof(uint64_t);
L
liuruilong 已提交
118

W
wangliu 已提交
119 120 121
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
122 123
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
L
liuruilong 已提交
124
    DLOG << "lod size: " << i << size;
W
wangliu 已提交
125
    std::vector<size_t> tmp(size / sizeof(size_t));
L
liuruilong 已提交
126 127

    for (int k = 0; k < tmp.size(); ++k) {
128 129
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
L
liuruilong 已提交
130 131
    }

W
wangliu 已提交
132 133 134 135 136 137 138
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
139 140
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);
W
wangliu 已提交
141 142

  // 4. tensor desc
143 144
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);
L
liuruilong 已提交
145

W
wangliu 已提交
146
  std::unique_ptr<char[]> buf(new char[size]);
L
liuruilong 已提交
147
  for (int m = 0; m < size; ++m) {
148
    buf.get()[m] = (*data)[m];
L
liuruilong 已提交
149
  }
150
  (*data) += (sizeof(char) * size);
W
wangliu 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  tensor->Resize(framework::make_ddim(desc.Dims()));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
      type_size = 2;
      break;
    case framework::VARTYPE_TYPE_FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::VARTYPE_TYPE_FP64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_INT32:
      type_size = 4;
      break;
    case framework::VARTYPE_TYPE_INT64:
      type_size = 8;
      break;
    case framework::VARTYPE_TYPE_BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

L
liuruilong 已提交
186
  for (int n = 0; n < memory_size * type_size; ++n) {
187
    static_cast<char *>(memory)[n] = (*data)[n];
L
liuruilong 已提交
188
  }
189
  (*data) += (sizeof(char) * memory_size * type_size);
W
wangliu 已提交
190 191 192 193 194 195 196 197 198 199 200 201
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
L
liuruilong 已提交
202

L
liuruilong 已提交
203 204
        char *origin_data =
            Get_binary_data(program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
205
        char *data = origin_data;
206
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
207
        delete origin_data;
W
wangliu 已提交
208 209 210 211 212 213 214 215 216 217 218
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();

          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
}

L
liuruilong 已提交
219
template <typename Dtype, Precision P>
L
liuruilong 已提交
220
void Executor<Dtype, P>::InitCombineMemory() {
L
liuruilong 已提交
221
  LOG(kLOG_INFO) << " begin init combine memory";
L
liuruilong 已提交
222
  char *origin_data = Get_binary_data(program_.para_path);
L
liuruilong 已提交
223
  char *data = origin_data;
L
liuruilong 已提交
224 225 226 227 228 229 230 231
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
232
        LoadMemory(*var_desc, tensor, &data);
L
liuruilong 已提交
233 234 235 236 237 238 239 240 241
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto tensor = var->template GetMutable<framework::LoDTensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
    }
  }
  delete origin_data;
L
liuruilong 已提交
242
  LOG(kLOG_INFO) << " end init combine memory ";
L
liuruilong 已提交
243 244
}

W
wangliu 已提交
245
template <typename Dtype, Precision P>
W
wangliu 已提交
246 247
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
248 249 250 251 252 253
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
254
      to_predict_program_->Block(0);
D
dolphin8 已提交
255
  auto &ops = ops_of_block_[*to_predict_block.get()];
D
dolphin8 已提交
256
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
257
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
258
#endif
D
dolphin8 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
#ifdef PADDLE_EXECUTOR_MULTITHREAD
  std::mutex m;
  std::condition_variable cv;
  std::queue<int> next;
  next.push(0);
  int rsize = ops.size();
  std::vector<int> status(rsize, 0);
  auto &threadPool = ThreadPool::getThreadPool();
  auto &dep = depManager[0];
  auto finishF = [&ops, &m, &cv, &next, &status, &rsize, &dep](int opi) {
    std::lock_guard<std::mutex> lk(m);
    rsize--;
    status[opi] = 2;
    for (int i : dep.getNext(opi)) {
      bool ok = true;
      for (int j : dep.getDeps(i)) {
        if (status[j] != 2) {
          ok = false;
          break;
        }
      }
      if (ok && (status[i] == 0)) {
        next.push(i);
      }
    }
    cv.notify_one();
  };
  for (;;) {
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, [&next, &rsize] { return rsize == 0 || !next.empty(); });
    if (rsize == 0) {
      break;
    }
    while (next.size() > 0) {
      int opi = next.front();
      next.pop();
      status[opi] = 1;
      threadPool.enqueue([opi, &ops, &finishF, &profile] {
        auto &op = ops[opi];
D
dolphin8 已提交
298
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
299 300 301 302
        struct timespec ts;
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
        profile[opi].tid = ThreadPool::getThreadPoolThreadId();
D
dolphin8 已提交
303
#endif
D
dolphin8 已提交
304
        ops[opi]->Run();
D
dolphin8 已提交
305
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
306 307
        clock_gettime(CLOCK_MONOTONIC, &ts);
        profile[opi].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
D
dolphin8 已提交
308
#endif
D
dolphin8 已提交
309 310 311
        finishF(opi);
      });
    }
W
wangliu 已提交
312
  }
D
dolphin8 已提交
313 314
#else
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
315
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
316 317 318 319
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
320 321

    // to Run
D
dolphin8 已提交
322 323 324 325 326
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
327 328
  }
#endif
W
wangliu 已提交
329
  auto last_op = ops.rbegin();
D
dolphin8 已提交
330

W
wangliu 已提交
331 332 333 334 335 336
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
337 338
#ifdef PADDLE_MOBILE_PROFILE
#ifdef PADDLE_EXECUTOR_MULTITHREAD
339 340
  // TODO(haipeng): expose profile info as an interface, user can get them to
  // analysis
D
dolphin8 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354
  //      the performance of their deepnet.
  FILE *df = fopen("net.dot", "w");
  fprintf(df, "digraph {\n");
  for (int i = 0; i < ops.size(); i++) {
    for (int j : dep.getNext(i)) {
      fprintf(df, "op_%d -> op_%d\n", i, j);
    }
  }
  for (int i = 0; i < ops.size(); i++) {
    fprintf(df, "op_%d[label=\"%s (%d)\"]\n", i, ops[i]->Type().c_str(), i);
  }
  fprintf(df, "}\n");
  fclose(df);
#endif
355 356

  //  FILE *pf = fopen("profile.out", "w");
D
dolphin8 已提交
357 358 359 360 361
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
L
liuruilong 已提交
362 363 364
    //    fprintf(pf, "%d\t%s\t%d\t%llu\t%llu\t%llu\n", i,
    //    ops[i]->Type().c_str(),
    //            pInfo.tid, pInfo.runBegin, pInfo.runEnd, timeCost);
D
dolphin8 已提交
365
  }
366 367
  //  fclose(pf);

D
dolphin8 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
381 382 383
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
384 385 386 387
  }
  printf("====================[---------]======================\n");
#endif

L
liuruilong 已提交
388
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
389 390 391 392 393
}
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
394 395 396
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
397
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
398 399
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
400 401 402 403 404 405 406 407
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
  Executor<Dtype, P>::Ptype *output_ptr =
      output_tensor->data<typename Executor<Dtype, P>::Ptype>();
  std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
  for (int j = 0; j < output_tensor->numel(); ++j) {
    result_vector.push_back(output_ptr[j]);
  }
  return result_vector;
W
wangliu 已提交
408 409
}

W
wangliu 已提交
410 411 412 413 414 415 416 417 418 419 420
template <typename Dtype, Precision P>
void Executor<Dtype, P>::SetThreadNum(int num) {
  for (int k = 0; k < std::max(num, 3); ++k) {
    operators::math::Gemmer::gemmers.push_back(new operators::math::Gemmer());
  }
#ifdef _OPENMP
  //  omp_set_dynamic(0);
  omp_set_num_threads(num);
#endif
}

W
wangliu 已提交
421
template class Executor<CPU, Precision::FP32>;
L
liuruilong 已提交
422 423
template class Executor<FPGA, Precision::FP32>;
template class Executor<GPU_MALI, Precision::FP32>;
W
wangliu 已提交
424 425

}  // namespace paddle_mobile