conv_impl.cc 31.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/backends/arm/math/conv_impl.h"
Y
Yan Chunwei 已提交
16
#include <arm_neon.h>
17
#include "lite/backends/arm/math/conv_depthwise.h"
18 19 20 21
#include "lite/backends/arm/math/gemm_prepacked_int8.h"
#include "lite/backends/arm/math/gemv_arm_int8.h"
#include "lite/backends/arm/math/packed_sgemm.h"
#include "lite/backends/arm/math/sgemv.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
#include "lite/core/context.h"
#include "lite/core/target_wrapper.h"
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace arm {
namespace math {

/**
 * \brief neon implementation to add bias
 * @param tensor
 * @param bias
 * @param channel
 * @param channel_size
 */
void fill_bias(float* tensor,
               const float* bias,
               int channel,
               int channel_size) {
  if (tensor == nullptr) {
    return;
  }
  float* data = tensor;

  for (int j = 0; j < channel; ++j) {
    float32x4_t vdata = vdupq_n_f32(bias[j]);
    int i = 0;
    for (; i < channel_size - 3; i += 4) {
      vst1q_f32(data + i, vdata);
    }
    for (; i < channel_size; i++) {
      data[i] = bias[j];
    }
    data += channel_size;
  }
}

void fill_bias_int8(int* tensor,
                    const int* bias,
                    int channel,
                    int channel_size) {
  if (tensor == nullptr) {
    return;
  }
  int* data = tensor;
  for (int j = 0; j < channel; ++j) {
    int32x4_t vdata = vdupq_n_s32(bias[j]);
    int i = 0;
    for (; i < channel_size - 3; i += 4) {
      vst1q_s32(data + i, vdata);
    }
    for (; i < channel_size; i++) {
      data[i] = bias[j];
    }
    data += channel_size;
  }
}

/**
 * \brief inline funcs used in im2col
 * @param a
 * @param b
 * @return
 */
inline bool is_a_ge_zero_and_a_lt_b(int a, int b) {
  return static_cast<unsigned>(a) < static_cast<unsigned>(b);
}

/**
 * \brief normal im2col function for gemm conv
 * @tparam dtype
 * @param data_im
 * @param channels
 * @param height
 * @param width
 * @param kernel_size
 * @param pad
 * @param stride
 * @param data_col
 */
template <typename Dtype>
void im2col(const Dtype* data_im,
105 106 107 108 109 110 111 112 113 114 115
            int channels,
            int height,
            int width,
            int kernel_h,
            int kernel_w,
            int pad_h,
            int pad_w,
            int stride_h,
            int stride_w,
            int dilation_h,
            int dilation_w,
Y
Yan Chunwei 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            Dtype* data_col) {
  const int output_h =
      (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
  const int output_w =
      (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
  const int channel_size = height * width;
  for (int channel = channels; channel--; data_im += channel_size) {
    for (int kernel_row = 0; kernel_row < kernel_h; kernel_row++) {
      for (int kernel_col = 0; kernel_col < kernel_w; kernel_col++) {
        int input_row = -pad_h + kernel_row * dilation_h;
        for (int output_rows = output_h; output_rows; output_rows--) {
          if (!is_a_ge_zero_and_a_lt_b(input_row, height)) {
            for (int output_cols = output_w; output_cols; output_cols--) {
              *(data_col++) = 0;
            }
          } else {
            int input_col = -pad_w + kernel_col * dilation_w;
            for (int output_col = output_w; output_col; output_col--) {
              if (is_a_ge_zero_and_a_lt_b(input_col, width)) {
                *(data_col++) = data_im[input_row * width + input_col];
              } else {
                *(data_col++) = 0;
              }
              input_col += stride_w;
            }
          }
          input_row += stride_h;
        }
      }
    }
  }
}

/**
 * \brief convolution function for kernel size 1x1, stride size 1, gemm
 * implementation
 */
void conv1x1s1_gemm(const float* i_data,
                    float* o_data,
                    int num,
                    int oc,
                    int oh,
                    int ow,
                    int ic,
                    int ih,
                    int win,
                    const float* weights,
                    const float* bias,
                    const operators::ConvParam& param,
165
                    ARMContext* ctx) {
Y
Yan Chunwei 已提交
166 167 168 169 170 171 172 173 174 175
  int channel_size_out = ow * oh;
  int channel_size_in = win * ih;

  const int group = param.groups;
  const int m = oc / group;
  const int n = oh * ow;
  const int k = ic / group;

  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
176 177

  int hblock = get_hblock(ctx);
Y
Yan Chunwei 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
  int m_roundup = hblock * ((m + hblock - 1) / hblock);
  int weights_size_per_group = m * k;
  if (n > 1) {
    weights_size_per_group = ((m_roundup * k + 15) / 16) * 16;
  }

  //! use gemv when the output channel size = 1
  for (int b = 0; b < num; ++b) {
    // dC
    for (int g = 0; g < group; ++g) {
      float* dout_group =
          static_cast<float*>(o_data) + (b * oc + g * m) * channel_size_out;
      const float* din_group = static_cast<const float*>(i_data) +
                               (b * ic + g * k) * channel_size_in;
      const float* weights_group =
          static_cast<const float*>(weights) + g * weights_size_per_group;
      const float* bias_group = static_cast<const float*>(bias) + g * m;

      if (n == 1) {
        sgemv(weights_group,
              din_group,
              dout_group,
              false,
              m,
              k,
              flag_bias,
              bias_group,
              flag_relu);
      } else {
        sgemm_prepack(false,
                      m,
                      n,
                      k,
                      weights_group,
                      din_group,
                      n,
                      0.f,
                      dout_group,
                      n,
                      bias_group,
                      flag_bias,
                      flag_relu,
                      ctx);
      }
    }
  }
}

226
template <typename Dtype>
Y
Yan Chunwei 已提交
227
void conv1x1s1_gemm_int8(const int8_t* i_data,
228
                         Dtype* o_data,
Y
Yan Chunwei 已提交
229 230 231 232 233 234 235 236
                         int num,
                         int oc,
                         int oh,
                         int ow,
                         int ic,
                         int ih,
                         int win,
                         const int8_t* weights,
237
                         const float* bias,
Y
Yan Chunwei 已提交
238 239
                         const operators::ConvParam& param,
                         ARMContext* ctx,
240
                         const float* scale) {
Y
Yan Chunwei 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
  int group = param.groups;
  int channel_size_out = ow * oh;
  int channel_size_in = win * ih;
  const int m = oc / group;
  const int n = oh * ow;
  const int k = ic / group;
  int hblock = get_hblock_int8(ctx);
  int k_roundup = ROUNDUP(k, KBLOCK_INT8);
  int m_roundup = ROUNDUP(m, hblock);
  int weights_size_per_group = m * k;
  if (n > 1) {
    weights_size_per_group = ((m_roundup * k_roundup + 15) / 16) * 16;
  }
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  //! use gemv when the output channel size = 1
  for (int b = 0; b < num; ++b) {
    // dC
    for (int g = 0; g < group; ++g) {
260
      Dtype* dout_group = o_data + (b * oc + g * m) * channel_size_out;
Y
Yan Chunwei 已提交
261 262
      const int8_t* din_group = i_data + (b * ic + g * k) * channel_size_in;
      const int8_t* weights_group = weights + g * weights_size_per_group;
263
      const float* bias_group = bias + g * m;
Y
Yan Chunwei 已提交
264 265
      const float* scale_group = scale + g * m;
      if (n == 1) {
266 267 268 269 270 271 272 273 274 275 276
        gemv_int8(weights_group,
                  din_group,
                  dout_group,
                  false,
                  m,
                  k,
                  scale_group,
                  flag_bias,
                  bias_group,
                  flag_relu,
                  ctx);
Y
Yan Chunwei 已提交
277
      } else {
278 279 280 281 282 283 284 285 286 287 288 289
        gemm_prepack_int8(weights_group,
                          din_group,
                          bias_group,
                          dout_group,
                          m,
                          n,
                          k,
                          flag_bias,
                          flag_relu,
                          false,
                          scale_group,
                          ctx);
Y
Yan Chunwei 已提交
290 291 292 293 294
      }
    }
  }
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
template void conv1x1s1_gemm_int8<int8_t>(const int8_t* i_data,
                                          int8_t* o_data,
                                          int num,
                                          int oc,
                                          int oh,
                                          int ow,
                                          int ic,
                                          int ih,
                                          int win,
                                          const int8_t* weights,
                                          const float* bias,
                                          const operators::ConvParam& param,
                                          ARMContext* ctx,
                                          const float* scale);

template void conv1x1s1_gemm_int8<float>(const int8_t* i_data,
                                         float* o_data,
                                         int num,
                                         int oc,
                                         int oh,
                                         int ow,
                                         int ic,
                                         int ih,
                                         int win,
                                         const int8_t* weights,
                                         const float* bias,
                                         const operators::ConvParam& param,
                                         ARMContext* ctx,
                                         const float* scale);

Y
Yan Chunwei 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
/**
 * \brief convolution function for kernel size 3x3, stride size 2, gemm
 * implementation
 */
void conv_im2col_gemm(const float* i_data,
                      float* o_data,
                      int num,
                      int oc,
                      int oh,
                      int ow,
                      int ic,
                      int ih,
                      int win,
                      const float* weights,
                      const float* bias,
                      const operators::ConvParam& param,
341
                      ARMContext* ctx) {
Y
Yan Chunwei 已提交
342 343 344 345 346 347 348 349 350 351 352 353
  const int group = param.groups;
  auto filter_dims = param.filter->dims();
  const int kernel_h = filter_dims[2];
  const int kernel_w = filter_dims[3];  // nchw
  const int m = oc / group;
  const int n = oh * ow;
  const int k = ic * kernel_h * kernel_w / group;
  const int chin_per_group = ic / group;
  int channel_size_out = ow * oh;
  int channel_size_in = win * ih;
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
354
  int hblock = get_hblock(ctx);
Y
Yan Chunwei 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
  int m_roundup = hblock * ((m + hblock - 1) / hblock);
  int weights_size_per_group = m * k;
  if (n > 1) {
    weights_size_per_group = ((m_roundup * k + 15) / 16) * 16;
  }

  float* tmp_work_space =
      ctx->workspace_data<float>() + ctx->llc_size() / sizeof(float);

  //! use gemv when the output channel size = 1
  for (int b = 0; b < num; ++b) {
    // dC
    for (int g = 0; g < group; ++g) {
      float* dout_group = o_data + (b * oc + g * m) * channel_size_out;
      const float* din_group =
          i_data + (b * ic + g * chin_per_group) * channel_size_in;
      const float* weights_group = weights + g * weights_size_per_group;
      const float* bias_group = bias + g * m;
      float* dB = tmp_work_space;

375 376 377 378 379 380 381 382 383 384 385 386 387 388
      im2col(din_group,
             chin_per_group,
             ih,
             win,
             kernel_h,
             kernel_w,
             param.paddings[0],
             param.paddings[1],
             param.strides[0],
             param.strides[1],
             param.dilations[0],
             param.dilations[1],
             dB);

Y
Yan Chunwei 已提交
389 390 391 392 393 394 395 396 397 398 399 400
      if (n == 1) {
        sgemv(weights_group,
              dB,
              dout_group,
              false,
              m,
              k,
              flag_bias,
              bias_group,
              flag_relu);
      } else {
        int ldb = n;
401
        sgemm_prepack(false,
Y
Yan Chunwei 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
                      m,
                      n,
                      k,
                      weights_group,
                      dB,
                      ldb,
                      0.f,
                      dout_group,
                      n,
                      bias_group,
                      flag_bias,
                      flag_relu,
                      ctx);
      }
    }
  }
}

420
template <typename Dtype>
Y
Yan Chunwei 已提交
421
void conv_im2col_gemm_int8(const int8_t* i_data,
422
                           Dtype* o_data,
Y
Yan Chunwei 已提交
423 424 425 426 427 428 429 430
                           int num,
                           int oc,
                           int oh,
                           int ow,
                           int ic,
                           int ih,
                           int win,
                           const int8_t* weights,
431
                           const float* bias,
Y
Yan Chunwei 已提交
432 433
                           const operators::ConvParam& param,
                           ARMContext* ctx,
434
                           const float* scale) {
Y
Yan Chunwei 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
  int group = param.groups;
  auto filter_dims = param.filter->dims();
  int kernel_h = filter_dims[2];
  int kernel_w = filter_dims[3];
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  int dila_h = param.dilations[0];
  int dila_w = param.dilations[1];
  int pad_h = param.paddings[0];
  int pad_w = param.paddings[1];
  const int m = oc / group;
  const int n = oh * ow;
  const int k = ic * kernel_h * kernel_w / group;
  const int chin_per_group = ic / group;
  int channel_size_out = ow * oh;
  int channel_size_in = win * ih;
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;

  int hblock = get_hblock_int8(ctx);
  int k_roundup = ROUNDUP(k, KBLOCK_INT8);
  int m_roundup = ROUNDUP(m, hblock);
  int weights_size_per_group = m * k;
  if (n > 1) {
    weights_size_per_group = ((m_roundup * k_roundup + 15) / 16) * 16;
  }

  int8_t* tmp_work_space =
      ctx->workspace_data<int8_t>() + ctx->llc_size() / sizeof(int8_t);

  //! use gemv when the output channel size = 1
  for (int b = 0; b < num; ++b) {
    // dC
    for (int g = 0; g < group; ++g) {
469
      Dtype* dout_group = o_data + (b * oc + g * m) * channel_size_out;
Y
Yan Chunwei 已提交
470 471 472 473
      const int8_t* din_group = static_cast<const int8_t*>(i_data) +
                                (b * ic + g * chin_per_group) * channel_size_in;
      const int8_t* weights_group =
          static_cast<const int8_t*>(weights) + g * weights_size_per_group;
474
      const float* bias_group = bias + g * m;
Y
Yan Chunwei 已提交
475 476 477
      int8_t* dB = tmp_work_space;
      const float* scale_group = scale + g * m;

478 479 480 481 482 483 484 485 486 487 488 489 490
      im2col(din_group,
             chin_per_group,
             ih,
             win,
             kernel_h,
             kernel_w,
             pad_h,
             pad_w,
             stride_h,
             stride_w,
             dila_h,
             dila_w,
             dB);
Y
Yan Chunwei 已提交
491
      if (n == 1) {
492 493 494 495 496 497 498 499 500 501 502
        gemv_int8(weights_group,
                  dB,
                  dout_group,
                  false,
                  m,
                  k,
                  scale_group,
                  flag_bias,
                  bias_group,
                  flag_relu,
                  ctx);
Y
Yan Chunwei 已提交
503
      } else {
504 505 506 507 508 509 510 511 512 513 514 515
        gemm_prepack_int8(weights_group,
                          dB,
                          bias_group,
                          dout_group,
                          m,
                          n,
                          k,
                          flag_bias,
                          flag_relu,
                          false,
                          scale_group,
                          ctx);
Y
Yan Chunwei 已提交
516 517 518 519 520
      }
    }
  }
}

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
template void conv_im2col_gemm_int8<int8_t>(const int8_t* i_data,
                                            int8_t* o_data,
                                            int num,
                                            int oc,
                                            int oh,
                                            int ow,
                                            int ic,
                                            int ih,
                                            int win,
                                            const int8_t* weights,
                                            const float* bias,
                                            const operators::ConvParam& param,
                                            ARMContext* ctx,
                                            const float* scale);

template void conv_im2col_gemm_int8<float>(const int8_t* i_data,
                                           float* o_data,
                                           int num,
                                           int oc,
                                           int oh,
                                           int ow,
                                           int ic,
                                           int ih,
                                           int win,
                                           const int8_t* weights,
                                           const float* bias,
                                           const operators::ConvParam& param,
                                           ARMContext* ctx,
                                           const float* scale);

void conv_depthwise_3x3_fp32(const void* din,
                             void* dout,
                             int num,
                             int ch_out,
                             int h_out,
                             int w_out,
                             int ch_in,
                             int h_in,
                             int w_in,
                             const void* weights,
                             const float* bias,
                             const operators::ConvParam& param,
                             ARMContext* ctx,
                             const float* scale) {
H
HappyAngel 已提交
565 566 567 568 569 570 571
  const int pad_h = param.paddings[0];
  const int pad_w = param.paddings[1];
  if (pad_w != pad_h) {
    LOG(FATAL) << "fp32 depthwise conv3x3 pad_w: " << pad_w
               << ", pad_h: " << pad_h << " must be equal";
    return;
  }
Y
Yan Chunwei 已提交
572
  int stride = param.strides[1];
H
HappyAngel 已提交
573 574 575 576 577
  int pad = pad_w;
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  if (stride == 1 && pad < 2) {  // support pad = [0, 1]
    conv_depthwise_3x3s1_fp32(reinterpret_cast<const float*>(din),
578 579 580 581 582 583 584 585 586 587
                              reinterpret_cast<float*>(dout),
                              num,
                              ch_out,
                              h_out,
                              w_out,
                              ch_in,
                              h_in,
                              w_in,
                              reinterpret_cast<const float*>(weights),
                              bias,
H
HappyAngel 已提交
588 589 590
                              pad,
                              flag_bias,
                              flag_relu,
591
                              ctx);
H
HappyAngel 已提交
592 593
  } else if (stride == 2 && pad < 2) {  // support pad = [0, 1]
    conv_depthwise_3x3s2_fp32(reinterpret_cast<const float*>(din),
594 595 596 597 598 599 600 601 602 603
                              reinterpret_cast<float*>(dout),
                              num,
                              ch_out,
                              h_out,
                              w_out,
                              ch_in,
                              h_in,
                              w_in,
                              reinterpret_cast<const float*>(weights),
                              bias,
H
HappyAngel 已提交
604 605 606
                              pad,
                              flag_bias,
                              flag_relu,
607 608
                              ctx);
  } else {
H
HappyAngel 已提交
609 610
    LOG(FATAL) << "fp32 depthwise conv3x3 stride: " << stride
               << " or pad(<2): " << pad << " unsupported";
611 612
  }
#if 0
Y
Yan Chunwei 已提交
613
  if (pad == 1) {
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    conv_depthwise_3x3p1_fp32(reinterpret_cast<const float*>(din),
                              reinterpret_cast<float*>(dout),
                              num,
                              ch_out,
                              h_out,
                              w_out,
                              ch_in,
                              h_in,
                              w_in,
                              reinterpret_cast<const float*>(weights),
                              bias,
                              stride,
                              flag_bias,
                              flag_relu,
                              ctx);
  } else if (pad == 0 && h_in > 2) {
    conv_depthwise_3x3p0_fp32(reinterpret_cast<const float*>(din),
                              reinterpret_cast<float*>(dout),
                              num,
                              ch_out,
                              h_out,
                              w_out,
                              ch_in,
                              h_in,
                              w_in,
                              reinterpret_cast<const float*>(weights),
                              bias,
                              stride,
                              flag_bias,
                              flag_relu,
                              ctx);
Y
Yan Chunwei 已提交
645 646 647
  } else {
    LOG(FATAL) << "unsupport this type 3x3 dw conv";
  }
648
#endif
Y
Yan Chunwei 已提交
649 650
}

651 652 653 654 655 656 657 658 659 660 661 662 663 664
void conv_depthwise_5x5_fp32(const void* din,
                             void* dout,
                             int num,
                             int ch_out,
                             int h_out,
                             int w_out,
                             int ch_in,
                             int h_in,
                             int w_in,
                             const void* weights,
                             const float* bias,
                             const operators::ConvParam& param,
                             ARMContext* ctx,
                             const float* scale) {
Y
Yan Chunwei 已提交
665 666 667 668
  int pad = param.paddings[1];
  int stride = param.strides[1];
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
669
  ctx->ExtendWorkspace((w_in + w_out) * sizeof(float));
Y
Yan Chunwei 已提交
670
  if (pad == 2 && stride == 2) {
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    conv_depthwise_5x5s2_fp32(reinterpret_cast<const float*>(din),
                              reinterpret_cast<float*>(dout),
                              num,
                              ch_out,
                              h_out,
                              w_out,
                              ch_in,
                              h_in,
                              w_in,
                              reinterpret_cast<const float*>(weights),
                              bias,
                              pad,
                              flag_bias,
                              flag_relu,
                              ctx);
Y
Yan Chunwei 已提交
686
  } else if (stride == 1) {
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    conv_depthwise_5x5s1_fp32(reinterpret_cast<const float*>(din),
                              reinterpret_cast<float*>(dout),
                              num,
                              ch_out,
                              h_out,
                              w_out,
                              ch_in,
                              h_in,
                              w_in,
                              reinterpret_cast<const float*>(weights),
                              bias,
                              pad,
                              flag_bias,
                              flag_relu,
                              ctx);
Y
Yan Chunwei 已提交
702 703 704 705 706
  } else {
    LOG(FATAL) << "unsupport this type 5x5 dw conv";
  }
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
void conv_depthwise_3x3_int8_fp32(const void* din,
                                  void* dout,
                                  int num,
                                  int ch_out,
                                  int h_out,
                                  int w_out,
                                  int ch_in,
                                  int h_in,
                                  int w_in,
                                  const void* weights,
                                  const float* bias,
                                  const operators::ConvParam& param,
                                  ARMContext* ctx,
                                  const float* scale) {
  int pad_h = param.paddings[0];
  int pad_w = param.paddings[1];
  int stride = param.strides[1];
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  if (stride == 1) {
    conv_depthwise_3x3s1_int8(reinterpret_cast<float*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else if (stride == 2) {
    conv_depthwise_3x3s2_int8(reinterpret_cast<float*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else {
    LOG(FATAL) << "unsupport this type 3x3 dw conv int8";
  }
}

void conv_depthwise_3x3_int8_int8(const void* din,
                                  void* dout,
                                  int num,
                                  int ch_out,
                                  int h_out,
                                  int w_out,
                                  int ch_in,
                                  int h_in,
                                  int w_in,
                                  const void* weights,
                                  const float* bias,
                                  const operators::ConvParam& param,
                                  ARMContext* ctx,
                                  const float* scale) {
  int pad_h = param.paddings[0];
  int pad_w = param.paddings[1];
  int stride = param.strides[1];
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  if (stride == 1) {
    conv_depthwise_3x3s1_int8(reinterpret_cast<int8_t*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else if (stride == 2) {
    conv_depthwise_3x3s2_int8(reinterpret_cast<int8_t*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else {
    LOG(FATAL) << "unsupport this type 3x3 dw conv int8";
  }
}

Y
yiicy 已提交
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
void conv_depthwise_5x5_int8_fp32(const void* din,
                                  void* dout,
                                  int num,
                                  int ch_out,
                                  int h_out,
                                  int w_out,
                                  int ch_in,
                                  int h_in,
                                  int w_in,
                                  const void* weights,
                                  const float* bias,
                                  const operators::ConvParam& param,
                                  ARMContext* ctx,
                                  const float* scale) {
  int pad_h = param.paddings[0];
  int pad_w = param.paddings[1];
  int stride = param.strides[1];
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  if (stride == 1) {
    conv_depthwise_5x5s1_int8(reinterpret_cast<float*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else {
    LOG(FATAL) << "unsupport this type 5x5 dw conv int8";
  }
}

void conv_depthwise_5x5_int8_int8(const void* din,
                                  void* dout,
                                  int num,
                                  int ch_out,
                                  int h_out,
                                  int w_out,
                                  int ch_in,
                                  int h_in,
                                  int w_in,
                                  const void* weights,
                                  const float* bias,
                                  const operators::ConvParam& param,
                                  ARMContext* ctx,
                                  const float* scale) {
  int pad_h = param.paddings[0];
  int pad_w = param.paddings[1];
  int stride = param.strides[1];
  bool flag_relu = param.fuse_relu;
  bool flag_bias = param.bias != nullptr;
  if (stride == 1) {
    conv_depthwise_5x5s1_int8(reinterpret_cast<int8_t*>(dout),
                              reinterpret_cast<const int8_t*>(din),
                              reinterpret_cast<const int8_t*>(weights),
                              scale,
                              bias,
                              flag_bias,
                              flag_relu,
                              num,
                              ch_in,
                              h_in,
                              w_in,
                              h_out,
                              w_out,
                              pad_w,
                              pad_h,
                              ctx);
  } else {
    LOG(FATAL) << "unsupport this type 5x5 dw conv int8";
  }
}

Y
Yan Chunwei 已提交
905 906 907 908
}  // namespace math
}  // namespace arm
}  // namespace lite
}  // namespace paddle