debugger.hpp 3.7 KB
Newer Older
M
MyPandaShaoxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <string>
#include <unordered_map>

// #include "lite/backends/fpga/lite_tensor.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {

#define FPGA_PRINT_TENSOR

class Debugger {
 public:
  static Debugger& get_instance() {
    static Debugger s_instance;
    return s_instance;
  }

  void registerOutput(std::string op_type, zynqmp::Tensor* tensor) {
    // tensor->printScale();
    if (op_type != "conv") {
      // tensor->saveToFile(op_type, true);
    }
  }

 private:
  std::unordered_map<std::string, bool> op_config;
  Debugger() {
    op_config["concat"] = true;
    op_config["conv"] = true;
    op_config["crop"] = true;
  }
};

inline void chw_to_hwc(Tensor* t, float* dst) {
  int num = t->dims()[0];
  int channel = t->dims()[1];

  int height = 1;
  int width = 1;
  if (t->dims().size() > 2) {
    height = t->dims()[2];
  }
  if (t->dims().size() > 3) {
    width = t->dims()[3];
  }
  // int width = t->dims()[3];
  const float* chw_data = t->data<float>();
  float* hwc_data = dst;

  int chw = channel * height * width;
  int wc = width * channel;
  int index = 0;
  for (int n = 0; n < num; n++) {
    for (int c = 0; c < channel; c++) {
      for (int h = 0; h < height; h++) {
        for (int w = 0; w < width; w++) {
          hwc_data[n * chw + h * wc + w * channel + c] = chw_data[index];
          index++;
        }
      }
    }
  }
}

inline void read_from_file(lite::Tensor* t, const std::string& path) {
  std::ifstream file_stream;
  file_stream.open(path);
  if (!file_stream) {
    return;
  }
  float* data = t->mutable_data<float>();
  int num = t->numel();
  for (int i = 0; i < num; ++i) {
    float value = 0;
    file_stream >> value;
    data[i] = value;
  }
  // flush();
}

inline void save_float(float* data, const std::string& name, int len) {
  // return;
  static int counter = 0;
  std::string old_string = std::to_string(counter);
  std::string new_string =
      std::string(3 - old_string.length(), '0') + old_string;

  std::string file = "arm_" + new_string + name;
  counter++;

  std::cout
      << "-------------------------- saving file: --------------------------"
      << file << std::endl;
  std::ofstream ofs;
  ofs.open(file);
  // float* data = dst;
  for (int i = 0; i < len; i++) {
    float value = data[i];
    ofs << value << std::endl;
  }
  ofs.close();
}

inline void save_tensor(lite::Tensor* t,
                        const std::string& name,
                        bool convert = true) {
  float* data = const_cast<float*>(t->data<float>());
  float* dst = new float[t->numel()];
  if (convert) {
    chw_to_hwc(t, dst);
    data = dst;
  }

  save_float(data, name, t->numel());
  delete[] dst;
}

inline void save_tensor(const lite::Tensor* t,
                        const std::string& name,
                        bool convert = true) {
  // return;
  float* data = const_cast<float*>(t->data<float>());
  float* dst = new float[t->numel()];
  if (convert) {
    chw_to_hwc(const_cast<lite::Tensor*>(t), dst);
    data = dst;
  }

  save_float(data, name, t->numel());

  delete[] dst;
}
}  // namespace lite
}  // namespace paddle