conv_bn_relu_kernel.cpp 3.4 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBNRELU_OP

#include "operators/kernel/conv_bn_relu_kernel.h"
H
hanbuhe 已提交
18
#include "fpga/quantization.h"
Z
zhangyang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

namespace paddle_mobile {
namespace operators {

template <>
bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam *param) {
  bool relu_enabled = true;
  const Tensor *input = param->Input();
  auto input_ptr = input->data<half>();
  Tensor *filter = param->Filter();
  Tensor *out = param->Output();
  auto out_ptr = out->mutable_data<half>();
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
  PADDLE_MOBILE_ENFORCE(input->dims()[1] == param->InputBias()->dims()[0],
                        "Image channel should be equal to bias number");

  const int channel = input->dims()[1];
  float *bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sizeof(float));
  Tensor *new_scale = new Tensor();
  Tensor *new_bias = new Tensor();
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
Z
zhangyang 已提交
49
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
50 51 52 53 54 55
    bs_ptr[i * 2] = new_scale_ptr[i];
    bs_ptr[i * 2 + 1] = new_bias_ptr[i];
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
  fpga::quantify_filter(filter);
Z
zhangyang 已提交
56
  auto filter_ptr = filter->data<int8_t>();
Z
zhangyang 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

  fpga::ConvArgs convArgs;
  convArgs.relu_enabled = relu_enabled;
  convArgs.filter_address = (void *)filter_ptr;
  convArgs.filter_num = filter->dims()[0];
  convArgs.group_num = param->Groups();
  convArgs.sb_address = (void *)bs_ptr;
  convArgs.kernel.stride_h = param->Strides()[0];
  convArgs.kernel.stride_w = param->Strides()[1];
  convArgs.kernel.height = filter->dims()[2];
  convArgs.kernel.width = filter->dims()[3];
  convArgs.image.address = (void *)input_ptr;
  convArgs.image.channels = input->dims()[1];
  convArgs.image.height = input->dims()[2];
  convArgs.image.width = input->dims()[3];
  convArgs.image.pad_height = param->Paddings()[0];
  convArgs.image.pad_width = param->Paddings()[1];
  convArgs.image.scale_address = input->fpga_args().scale_pointer();
  convArgs.output.address = (void *)out_ptr;
  convArgs.output.scale_address = out->fpga_args().scale_pointer();
  param->SetFpgaArgs(convArgs);
  return true;
}

template <>
void ConvBNReluKernel<FPGA, float>::Compute(
    const FusionConvBNReluParam &param) const {
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvBNReluKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif