conv_process.hpp 17.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

M
MyPandaShaoxiang 已提交
17 18 19
#ifndef conv_process_hpp
#define conv_process_hpp

Y
Yan Chunwei 已提交
20 21 22 23
#include <string.h>
#include <cmath>
#include <vector>

24 25 26 27 28 29
#include "lite/backends/fpga/KD/float16.hpp"
#include "lite/backends/fpga/KD/llapi/bias_scale.h"
#include "lite/backends/fpga/KD/llapi/filter.h"
#include "lite/backends/fpga/KD/pe_params.hpp"
#include "lite/backends/fpga/KD/tensor.hpp"
#include "lite/backends/fpga/KD/tensor_util.hpp"
Y
Yan Chunwei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace zynqmp {

inline int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

inline int get_filter_num_per_div(Tensor* filter, int group_num) {
  auto chw = filter->shape().channel() * filter->shape().height() *
             filter->shape().width();
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

inline int get_split_num(Tensor* filter) {
  auto chw = filter->shape().channel() * filter->shape().height() *
             filter->shape().width();
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
M
MyPandaShaoxiang 已提交
51 52 53
  int filter_num_alignment = filter::get_filter_num_alignment();
  int aligned_num = align_to_x(num, filter_num_alignment);
  return filter::calc_split_num(aligned_num, div_capacity);
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
}

inline void fill_scale_bias_const(ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = 1.0f;
    new_bias_ptr[i] = 0.0f;
  }
  param_->scale()->flush();
  param_->bias()->flush();
}

inline void combine_bn_params(BatchnormParam* bn, ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  float* bn_scale_ptr = bn->scale->data<float>();
  float* bn_bias_ptr = bn->bias->data<float>();
  float* bn_var_ptr = bn->variance->data<float>();
  float* bn_mean_ptr = bn->mean->data<float>();
  float epsilon = bn->epsilon;
  for (int i = 0; i < channel; i++) {
    float new_scale = bn_scale_ptr[i] /
                      static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
    new_scale_ptr[i] = new_scale;
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
  }
}

inline void combine_add_bn_params(BatchnormParam* bn,
                                  Tensor* bias,
                                  ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  if (bn != nullptr) {
    float* bn_scale_ptr = bn->scale->data<float>();
    float* bn_bias_ptr = bn->bias->data<float>();
    float* bn_var_ptr = bn->variance->data<float>();
    float* bn_mean_ptr = bn->mean->data<float>();
    float epsilon = bn->epsilon;
    float* bias_data = bias->data<float>();
    for (int i = 0; i < channel; i++) {
      float new_scale = bn_scale_ptr[i] /
                        static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
      new_scale_ptr[i] = new_scale;
      new_bias_ptr[i] =
          bn_bias_ptr[i] + (bias_data[i] - bn_mean_ptr[i]) * new_scale_ptr[i];
    }
  } else {
    for (int i = 0; i < channel; i++) {
      new_scale_ptr[i] = 1.0f;
      new_bias_ptr[i] = 0.0f;
    }
  }
  param_->scale()->flush();
  param_->bias()->flush();
  param_->scale()->setDataLocation(CPU);
  param_->bias()->setDataLocation(CPU);
}

inline void format_scale_bias(Tensor* scale,
                              Tensor* bias,
                              Tensor* filter,
                              Tensor* scale_bias,
                              int group) {
  float* scale_data = nullptr;
  float* bias_data = nullptr;
  if (scale != nullptr) {
    scale_data = scale->data<float>();
  }
  if (bias != nullptr) {
    bias_data = bias->data<float>();
  }
  int channel = filter->shape().num();
M
MyPandaShaoxiang 已提交
134 135 136 137 138 139
  int scale_bias_len = align_to_x(channel / group, BS_NUM_ALIGNMENT) * group;

  int c_per_group = channel / group;
  int aligned_c_per_group = align_to_x(channel / group, BS_NUM_ALIGNMENT);

  Shape bias_scale_shape(N, {2 * scale_bias_len});
Y
Yan Chunwei 已提交
140
  float* bs_data = scale_bias->mutableData<float>(FP32, bias_scale_shape);
M
MyPandaShaoxiang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  float* temp_data =
      reinterpret_cast<float*>(fpga_malloc(2 * scale_bias_len * sizeof(float)));
  memset(temp_data, 0, 2 * scale_bias_len * sizeof(float));

  std::vector<float> scales;
  if (scale_data != nullptr) {
    for (int i = 0; i < channel; ++i) {
      scales.push_back(scale_data[i]);
    }
    for (int i = 0; i < scale_bias_len - channel; i++) {
      scales.push_back(1);
    }
  } else {
    for (int i = 0; i < scale_bias_len; i++) {
      scales.push_back(1);
    }
Y
Yan Chunwei 已提交
157 158
  }

M
MyPandaShaoxiang 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  for (int i = 0; i < scale_bias_len; ++i) {
    temp_data[i + scale_bias_len] = 1;
    temp_data[i] = 0;
  }

  for (int g = 0; g < group; g++) {
    for (int c = 0; c < c_per_group; c++) {
      int src_index = g * c_per_group + c;
      int dst_index = g * aligned_c_per_group + c;
      float scale_value = scales[src_index];
      float bias_value = bias_data == nullptr ? 0 : bias_data[src_index];
      temp_data[dst_index + scale_bias_len] = scale_value;
      temp_data[dst_index] = bias_value;
    }
  }

  bias_scale::format_bias_scale_array(
      &temp_data, scale_bias_len / group, scale_bias_len);
  memcpy(bs_data, temp_data, 2 * scale_bias_len * sizeof(float));
Y
Yan Chunwei 已提交
178 179
}

M
MyPandaShaoxiang 已提交
180 181 182 183
inline void format_filter(Tensor* filter,
                          Tensor* quantized_filter,
                          int group,
                          std::vector<float>& scales) {  // NOLINT
Y
Yan Chunwei 已提交
184 185
  float max_value = find_max(*filter);
  Shape& filter_shape = filter->shape();
M
MyPandaShaoxiang 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

  int mem_size;
  std::vector<float> max_values;
  int8_t* quantized_data = filter::format_filter(filter->data<float>(),
                                                 mem_size,
                                                 filter_shape.num(),
                                                 filter_shape.channel(),
                                                 filter_shape.height(),
                                                 filter_shape.width(),
                                                 group,
                                                 max_value,
                                                 max_values);

  float mem_factor = mem_size * 1.0f / filter->shape().numel();
  quantized_filter->setMemScale(mem_factor);

Y
Yan Chunwei 已提交
202
  quantized_filter->setAligned(true);
M
MyPandaShaoxiang 已提交
203
  int8_t* src = quantized_filter->mutableData<int8_t>(INT8, filter->shape());
Y
Yan Chunwei 已提交
204 205 206
  quantized_filter->scale()[0] = max_value / 127.0f;
  quantized_filter->scale()[1] = 127.0f / max_value;

M
MyPandaShaoxiang 已提交
207
  memcpy(src, quantized_data, mem_size);
Y
Yan Chunwei 已提交
208
  quantized_filter->flush();
M
MyPandaShaoxiang 已提交
209 210 211 212

  for (size_t i = 0; i < max_values.size(); i++) {
    scales.push_back(max_values[i] / max_value);
  }
Y
Yan Chunwei 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
}

inline void format_dw_filter(Tensor* filter,
                             Tensor* quantized_filter,
                             float* scale) {
  int num = filter->shape().num();
  int height = filter->shape().height();
  int width = filter->shape().width();
  auto memory_size = filter->shape().memorySize(sizeof(float));
  auto new_data = (float*)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, filter->data<float>(), memory_size);

  size_t size =
      filter::format_dwconv_filter(&new_data, num, height, width, scale);
  float16* src = quantized_filter->mutableData<float16>(FP16, filter->shape());

  memcpy(src, new_data, size);
  quantized_filter->flush();

  fpga_free(new_data);
}

inline void format_fc_filter(Tensor* filter, Tensor* quantized_filter) {
  float max_value = find_max(*filter);
  Shape& filter_shape = filter->shape();
  quantized_filter->setAligned(true);
  quantized_filter->mutableData<int8_t>(INT8, filter->shape());
  quantized_filter->scale()[0] = max_value / 127.0f;
  quantized_filter->scale()[1] = 127.0f / max_value;

  size_t memory_size = filter->shape().memorySize(sizeof(float));
  auto new_data = (float*)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, filter->data<float>(), memory_size);

  int8_t* src = quantized_filter->mutableData<int8_t>(INT8, filter->shape());
  memcpy(src, new_data, quantized_filter->shape().memorySize(sizeof(int8_t)));
  quantized_filter->flush();
  fpga_free(new_data);
}

inline void split_filter_num(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* out = param.output;
  Tensor* filter = param.filter;
  auto channel = out->shape().channel();
  int split_num = param.groups == 1 ? get_split_num(param.filter) : 1;
  int filter_num_per_div = get_filter_num_per_div(filter, param.groups);

M
MyPandaShaoxiang 已提交
262 263 264 265 266 267 268 269 270
  auto chw = filter->shape().channel() * filter->shape().height() *
             filter->shape().width();
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
  int filter_num_alignment = filter::get_filter_num_alignment();
  int aligned_num =
      align_to_x(num / param.groups, filter_num_alignment) * param.groups;
  split_num = filter::calc_split_num(aligned_num, div_capacity);

Y
Yan Chunwei 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
  Shape& out_shape = out->shape();
  for (int i = 0; i < split_num; i++) {
    BasicConvParam* conv_param = new BasicConvParam();
    conv_param->output.setDataLocation(Device);
    conv_param->output.setAligned(true);

    int filter_num = filter->shape().num();
    float16* out_address = nullptr;
    float* out_scale_address = nullptr;

    ConvArgs& args = conv_param->args;

    if (split_num == 1) {
      out_address = out->data<float16>();
      out_scale_address = out->scale();
    }
    filter_num = i == split_num - 1
                     ? channel - (split_num - 1) * filter_num_per_div  // NOLINT
                     : filter_num_per_div;

    if (split_num != 1) {
      Shape shape(NHWC, {1, out_shape.height(), out_shape.width(), filter_num});
      out_address = conv_param->output.mutableData<float16>(FP16, shape);
      out_scale_address = conv_param->output.scale();
    }
    Shape f_shape(NCHW,
                  {filter_num,
                   filter->shape().channel(),
                   filter->shape().height(),
                   filter->shape().width()});

    Tensor new_filter;
    float* new_filter_data = new_filter.mutableData<float>(FP32, f_shape);
    int filter_hwc = filter->shape().height() * filter->shape().width() *
                     filter->shape().channel();

    memcpy(new_filter_data,
           filter->data<float>() + i * filter_num_per_div * filter_hwc,
           filter_num * filter_hwc * sizeof(float));
    new_filter.flush();
    conv_param->filter.mutableData<float>(FP32, f_shape);
M
MyPandaShaoxiang 已提交
312 313 314 315 316 317 318 319 320 321

    if (param.groups != 1) {
      int mem_factor =
          32 / filter_num_per_div;  // TODO(chonwhite): change 32 to param;
      conv_param->filter.setMemScale(mem_factor);
    }

    std::vector<float> v;  // TODO(chonwhite): change local variable name
    format_filter(&new_filter, &(conv_param->filter), param.groups, v);
    conv_param->filter.setDataType(INT8);
Y
Yan Chunwei 已提交
322 323 324 325 326 327 328 329 330 331 332

    int sb_num = 2 * align_to_x(filter_num, BS_NUM_ALIGNMENT);
    Tensor scale;
    Tensor bias;

    int chnnnel_start = i * filter_num_per_div;

    Shape s_shape(N, {filter_num});
    float* scale_data = scale.mutableData<float>(FP32, s_shape);
    float* bias_data = bias.mutableData<float>(FP32, s_shape);
    for (int n = 0; n < filter_num; n++) {
M
MyPandaShaoxiang 已提交
333
      scale_data[n] = param.scale()->data<float>()[n + chnnnel_start] * v[n];
Y
Yan Chunwei 已提交
334 335 336 337 338 339 340 341 342 343
    }
    for (int n = 0; n < filter_num; n++) {
      bias_data[n] = param.bias()->data<float>()[n + chnnnel_start];
    }
    Shape sb_shape(N, {sb_num});
    format_scale_bias(&scale,
                      &bias,
                      &conv_param->filter,
                      &conv_param->scaleBias,
                      param.groups);
M
MyPandaShaoxiang 已提交
344

Y
Yan Chunwei 已提交
345
    conv_param->scaleBias.flush();
M
MyPandaShaoxiang 已提交
346
    float* bs_data = conv_param->scaleBias.data<float>();
Y
Yan Chunwei 已提交
347 348 349 350

    args.group_num = param.groups;
    args.relu_enabled = param.relu.enabled;
    args.sb_address = conv_param->scaleBias.data<float>();
M
MyPandaShaoxiang 已提交
351
    args.sb_address = bs_data;
Y
Yan Chunwei 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364
    args.kernel.stride_h = param.strides[1];
    args.kernel.stride_w = param.strides[0];
    args.kernel.height = new_filter.shape().height();
    args.kernel.width = new_filter.shape().width();

    args.filter_address = conv_param->filter.data<int8_t>();
    args.filter_num = filter_num;
    args.filter_scale_address = conv_param->filter.scale();
    args.image.address = input->data<void>();
    args.image.scale_address = input->scale();
    args.image.channels = input->shape().channel();
    args.image.width = input->shape().width();
    args.image.height = input->shape().height();
M
MyPandaShaoxiang 已提交
365
    args.image.pad_width = param.paddings[1];
Y
Yan Chunwei 已提交
366
    args.image.pad_height = param.paddings[0];
M
MyPandaShaoxiang 已提交
367 368
    args.dilation = param.dilations[0];

Y
Yan Chunwei 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382
    args.output.address = out_address;
    args.output.scale_address = out_scale_address;
    param.splitParams().push_back(conv_param);
  }
}

inline void split_channel(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* output = param.output;
  input->syncToCPU();

  int num = ceil(input->shape().channel() * 1.0f / 2047);
  int channel = input->shape().channel() / num;
M
MyPandaShaoxiang 已提交
383

Y
Yan Chunwei 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396
  Shape bs_shape(N, {channel});

  for (int i = 0; i < num; i++) {
    BasicConvParam* conv_param = new BasicConvParam();

    // input && output;
    Shape in_shape(
        NCHW, {1, channel, input->shape().height(), input->shape().width()});
    conv_param->input.shareDataWith(input, in_shape, channel * i);
    conv_param->output.mutableData<float16>(FP16, output->shape());

    // filter transformation;
    Shape f_shape(NCHW, {param.filter->shape().num(), channel, 1, 1});
M
MyPandaShaoxiang 已提交
397

Y
Yan Chunwei 已提交
398 399 400 401 402 403 404 405 406 407
    Tensor new_filter;

    float* dst = new_filter.mutableData<float>(FP32, f_shape);
    float* src = param.filter->data<float>() + i * channel;
    for (int n = 0; n < f_shape.num(); n++) {
      memcpy(dst, src, channel * sizeof(float));
      dst += channel;
      src += param.filter->shape().channel();
    }
    new_filter.flush();
M
MyPandaShaoxiang 已提交
408 409
    std::vector<float> scales;
    format_filter(&new_filter, &(conv_param->filter), param.groups, scales);
Y
Yan Chunwei 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

    Tensor bias;
    Tensor scale;

    float* bias_data = bias.mutableData<float>(FP32, bs_shape);
    float* scale_data = scale.mutableData<float>(FP32, bs_shape);
    for (int c = 0; c < channel; c++) {
      scale_data[c] = 1;
      bias_data[c] = param.bias()->data<float>()[c] / num;
    }
    scale.flush();
    bias.flush();
    format_scale_bias(&scale,
                      &bias,
                      &conv_param->filter,
                      &conv_param->scaleBias,
                      param.groups);
    conv_param->scaleBias.flush();

    ConvArgs& args = conv_param->args;
    args.group_num = param.groups;
    args.relu_enabled = param.relu.enabled;
    args.sb_address = conv_param->scaleBias.data<float>();
    args.kernel.stride_h = param.strides[1];
    args.kernel.stride_w = param.strides[0];
    args.kernel.height = new_filter.shape().height();
    args.kernel.width = new_filter.shape().width();

    args.filter_address = conv_param->filter.data<int8_t>();
    args.filter_num = f_shape.num();
    args.filter_scale_address = conv_param->filter.scale();
    args.image.address = conv_param->input.mutableData<void>();
    args.image.scale_address = conv_param->input.scale();

    args.image.channels = conv_param->input.shape().channel();
    args.image.width = conv_param->input.shape().width();
    args.image.height = conv_param->input.shape().height();
M
MyPandaShaoxiang 已提交
447 448 449
    args.image.pad_width = param.paddings[1];
    args.image.pad_height = param.paddings[0];
    args.dilation = param.dilations[0];
Y
Yan Chunwei 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    args.output.address = conv_param->output.mutableData<void>();
    args.output.scale_address = conv_param->output.scale();
    param.splitParams().push_back(conv_param);
  }
}

inline int fill_split_arg(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* output = param.output;
  if (output->shape().dimSize() == 4 && input->shape().channel() > 2047 &&
      input->shape().width() == 1) {
    split_channel(c_param);
    return 1;
  } else {
    split_filter_num(c_param);
    return 0;
  }
}

inline bool compute_conv(const ConvParam& c_conv_params) {
  ConvParam& conv_params = const_cast<ConvParam&>(c_conv_params);
  std::vector<BasicConvParam*>& params = conv_params.splitParams();
  int ret = 0;
  for (auto conv_param : params) {
    ret |= compute_fpga_conv_basic(conv_param->args);
  }
  size_t size = params.size();
  if (ret == 0 && size > 1) {
    Tensor& img = params[0]->output;
    for (int i = 0; i < 1; i++) {
      for (int i = 0; i < img.shape().numel(); i++) {
        float value = half_to_float(img.data<float16>()[i]);
      }
    }
  }
  return ret == 0;
}

}  // namespace zynqmp
}  // namespace paddle
M
MyPandaShaoxiang 已提交
491 492

#endif /* conv_process_hpp */