conv_pe.hpp 8.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <arm_neon.h>
M
MyPandaShaoxiang 已提交
18
#include <algorithm>
Y
Yan Chunwei 已提交
19 20
#include <vector>

21 22 23 24 25 26 27
#include "lite/backends/fpga/KD/pe.hpp"
#include "lite/backends/fpga/KD/pe_params.hpp"
#include "lite/backends/fpga/KD/pes/concat_pe.hpp"
#include "lite/backends/fpga/KD/pes/conv_pe.hpp"
#include "lite/backends/fpga/KD/pes/conv_process.hpp"
#include "lite/backends/fpga/KD/pes/elementwise_add_pe.hpp"
#include "lite/backends/fpga/KD/pes/scale_pe.hpp"
Y
Yan Chunwei 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

namespace paddle {
namespace zynqmp {

class ConvPE : public PE {
 public:
  bool init() {
    Tensor* output = param_.output;
    output->setAligned(true);
    output->setDataLocation(Device);
    return true;
  }

  void apply() {
    split_axis = fill_split_arg(param_);

    if (split_axis == 0 && param_.splitParams().size() > 1) {
      ConcatParam& concat_param = concatPE_.param();
      for (auto conv_param : param_.splitParams()) {
        concat_param.inputs.push_back(&conv_param->output);
      }
      concat_param.output = param_.output;
      concatPE_.init();
      concatPE_.apply();
    }
M
MyPandaShaoxiang 已提交
53 54 55 56 57 58 59 60 61

    if (DLEngine::get_instance().isZU3() &&
        param_.input->shape().dimSize() == 4 &&
        param_.input->shape().width() == 1 &&
        param_.input->shape().width() >= 2048) {
      use_cpu_ = true;
    }

    if (param_.filter->shape().width() == 1 &&
M
MyPandaShaoxiang 已提交
62
        param_.filter->shape().height() == 1) {  // NOLINT
M
MyPandaShaoxiang 已提交
63
    }
M
MyPandaShaoxiang 已提交
64
    if (!use_cpu_) {  // NOLINT
M
MyPandaShaoxiang 已提交
65
    }
Y
Yan Chunwei 已提交
66
  }
M
MyPandaShaoxiang 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

  void cpu_conv_hwc() {
    Tensor* input = param_.input;
    Tensor* output = param_.output;
    input->syncToCPU();

    Tensor float_input;
    Tensor float_output;
    float* image_addr = float_input.mutableData<float>(FP32, input->shape());
    float_input.copyFrom(input);
    float_input.syncToCPU();
    float* out = float_output.mutableData<float>(FP32, output->shape());

    int out_width = output->shape().width();
    int out_channel = output->shape().channel();
    int in_channel = input->shape().channel();

    float* filter_data = param_.filter->data<float>();

    int image_height = input->shape().height();
    int image_width = input->shape().width();
    int image_channels = input->shape().channel();
    int image_pad_h = param_.paddings[0];
    int image_pad_w = param_.paddings[1];
    int kernel_height = param_.filter->shape().height();
    int kernel_width = param_.filter->shape().width();
    int kernel_step_h = param_.strides[0];
    int kernel_step_w = param_.strides[1];
    int pooled_height_ = output->shape().height();
    int pooled_width_ = out_width;
    int filter_chw = image_channels * kernel_height * kernel_width;

    float max = 0;

    for (int ph = 0; ph < pooled_height_; ph++) {
      for (int pw = 0; pw < pooled_width_; pw++) {
        int hstart = ph * kernel_step_h - image_pad_h;
        int wstart = pw * kernel_step_w - image_pad_w;
        int hend =
            std::min(hstart + kernel_height, static_cast<int>(image_height));
        int wend =
            std::min(wstart + kernel_width, static_cast<int>(image_width));
        hstart = std::max(hstart, static_cast<int>(0));
        wstart = std::max(wstart, static_cast<int>(0));
        for (int oc = 0; oc < out_channel; oc++) {
          float sum = 0.0f;
          const int pool_index = (ph * pooled_width_ + pw) * out_channel + oc;
          for (int c = 0; c < image_channels; c++) {
            for (int h = hstart; h < hend; h++) {
              int hi = 0;
              if (ph == 0) {
                hi = h - hstart + image_pad_h;
              } else {
                hi = h - hstart;
              }
              for (int w = wstart; w < wend; w++) {
                int wi = 0;
                if (pw == 0) {
                  wi = w - wstart + image_pad_w;
                } else {
                  wi = w - wstart;
                }
                const int index = (h * image_width + w) * image_channels + c;
                int weight_index = oc * filter_chw +
                                   kernel_width * kernel_height * c +
                                   kernel_width * hi + wi;
                float value = image_addr[index] * filter_data[weight_index];
                sum += value;
              }
            }
          }

          if (param_.relu.enabled && sum < 0) {
            sum = -sum;
          }
          if (sum > max) {
            max = sum;
          }
          out[pool_index] = sum;
        }
      }
    }
    float_output.flush();
    output->copyFrom(&float_output);
    output->scale()[0] = max / 127;
    output->scale()[1] = 127 / max;
  }

Y
Yan Chunwei 已提交
155 156 157 158 159 160 161 162 163
  void cpu_compute() {
    Tensor* input = param_.input;
    Tensor* output = param_.output;
    input->syncToCPU();

    Tensor float_input;
    Tensor float_output;
    float* image_addr = float_input.mutableData<float>(FP32, input->shape());
    float_input.copyFrom(input);
M
MyPandaShaoxiang 已提交
164 165
    float_input.syncToCPU();

Y
Yan Chunwei 已提交
166 167
    float* out = float_output.mutableData<float>(FP32, output->shape());

M
MyPandaShaoxiang 已提交
168 169 170
    float* bias_data = param_.bias()->data<float>();

    int out_width = output->shape().width();
Y
Yan Chunwei 已提交
171 172 173 174 175
    int out_channel = output->shape().channel();
    int in_channel = input->shape().channel();

    float* filter_data = param_.filter->data<float>();
    float* mi = new float[in_channel];
M
MyPandaShaoxiang 已提交
176
    float max = 0;
Y
Yan Chunwei 已提交
177

M
MyPandaShaoxiang 已提交
178
    int out_index = 0;
Y
Yan Chunwei 已提交
179 180 181 182 183
    for (int i = 0; i < out_channel; i++) {
      float* image = image_addr;
      float* filter_ptr = filter_data + i * in_channel;
      float* out_ptr = mi;

M
MyPandaShaoxiang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
      for (int h = 0; h < output->shape().height(); h++) {
        for (int w = 0; w < output->shape().width(); w++) {
          float sum = 0;

          // #pragma omp parallel for
          for (int j = 0; j < in_channel; j++) {
            int image_index = h * out_width * in_channel + w * in_channel + j;
            float value = image_addr[image_index] * filter_ptr[j];
            sum += value;
          }

          sum += bias_data[i];

          if (param_.relu.enabled && sum < 0) {
            sum = 0;
          }
          if (sum > max) {
            max = sum;
          }
          out_index = h * out_width * out_channel + w * out_channel + i;
          out[out_index] = sum;
        }
Y
Yan Chunwei 已提交
206 207 208 209 210
      }
    }
    delete[] mi;
    float_output.flush();
    output->copyFrom(&float_output);
M
MyPandaShaoxiang 已提交
211 212
    output->scale()[0] = max / 127;
    output->scale()[1] = 127 / max;
Y
Yan Chunwei 已提交
213 214 215
  }

  bool dispatch() {
M
MyPandaShaoxiang 已提交
216 217 218 219 220 221 222 223 224 225
    if (use_cpu_) {
      cpu_compute();
      return true;
    }

    inplace_.leaky_relu_enable =
        (param_.relu.leaky_relu_factor != 0) ? true : false;
    inplace_.relu_enable =
        inplace_.leaky_relu_enable ? false : param_.relu.enabled;

Y
Yan Chunwei 已提交
226 227
    inplace_.power_enable = false;
    inplace_.normalize_enable = false;
M
MyPandaShaoxiang 已提交
228
    if (inplace_.relu_enable || inplace_.leaky_relu_enable) {
Y
Yan Chunwei 已提交
229
      config_inplace(inplace_);
M
MyPandaShaoxiang 已提交
230 231 232 233 234 235
      if (inplace_.leaky_relu_enable) {
        activeParamterArgs.type = TYPE_LEAK_RELU;
        activeParamterArgs.leaky_relu_factor =
            fp32_2_fp16(param_.relu.leaky_relu_factor);
        config_activation(activeParamterArgs);
      }
Y
Yan Chunwei 已提交
236 237 238 239 240 241 242 243
    }

    std::vector<BasicConvParam*>& params = param_.splitParams();
    int ret = 0;
    for (auto conv_param : params) {
      ret |= compute_fpga_conv_basic(conv_param->args);
    }

M
MyPandaShaoxiang 已提交
244
    if (inplace_.relu_enable || inplace_.leaky_relu_enable) {
Y
Yan Chunwei 已提交
245
      inplace_.relu_enable = false;
M
MyPandaShaoxiang 已提交
246
      inplace_.leaky_relu_enable = false;
Y
Yan Chunwei 已提交
247
      config_inplace(inplace_);
M
MyPandaShaoxiang 已提交
248 249 250 251 252 253

      if (inplace_.leaky_relu_enable) {
        activeParamterArgs.type = TYPE_LEAK_RELU;
        activeParamterArgs.leaky_relu_factor = fp32_2_fp16(0);
        config_activation(activeParamterArgs);
      }
Y
Yan Chunwei 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
    }

    size_t size = params.size();
    if (split_axis == 0 && ret == 0 && size > 1) {
      concatPE_.dispatch();
    }
    if (split_axis == 1 && ret == 0 && size > 1) {
      ElementwiseAddParam& add_param = addPE_.param();
      add_param.inputs = {&params[0]->output, &params[1]->output};
      add_param.output = param_.output;
      addPE_.init();
      addPE_.apply();
      addPE_.dispatch();
    }
    return ret == 0;
  }

  ConvParam& param() { return param_; }

 private:
M
MyPandaShaoxiang 已提交
274
  bool use_cpu_ = false;
Y
Yan Chunwei 已提交
275 276 277 278 279
  ConvParam param_;
  ConcatPE concatPE_;
  ElementwiseAddPE addPE_;
  int split_axis = 0;
  InplaceArgs inplace_ = {0};
M
MyPandaShaoxiang 已提交
280
  ActiveParamterArgs activeParamterArgs;
Y
Yan Chunwei 已提交
281 282 283 284
};

}  // namespace zynqmp
}  // namespace paddle