slice_compute_test.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"

namespace paddle {
namespace lite {

static void slice_ref(const float* input,
                      std::vector<int64_t> in_dims,
                      std::vector<int> axes,
                      std::vector<int> starts,
                      std::vector<int> ends,
                      float* out) {
  auto out_dims = in_dims;
  std::vector<int> real_starts(in_dims.size(), 0);
  std::vector<int> real_ends(in_dims.size(), 0);
  std::vector<int> real_step(in_dims.size(), 0);
  for (int i = 0; i < in_dims.size(); i++) {
    real_ends[i] = in_dims[i];
  }
  for (int i = 0; i < axes.size(); i++) {
    int dim_value = in_dims[axes[i]];
    if (dim_value > 0) {
      int start = starts[i] < 0 ? (starts[i] + dim_value) : starts[i];
      int end = ends[i] < 0 ? (ends[i] + dim_value) : ends[i];
      start = std::max(start, 0);
      end = std::max(end, 0);
      end = std::min(end, dim_value);
      out_dims[axes[i]] = end - start;
      real_starts[axes[i]] = start;
      real_ends[axes[i]] = end;
    }
  }
  const int LEN = in_dims.size();
  int dst_step[LEN];
  for (int i = 0; i < in_dims.size(); ++i) {
    dst_step[i] = 1;
  }
  int src_step[LEN];
  for (int i = 0; i < in_dims.size(); ++i) {
    src_step[i] = 1;
  }
  int out_num = out_dims[in_dims.size() - 1];
  for (int i = in_dims.size() - 2; i >= 0; i--) {
    dst_step[i] = out_dims[i + 1] * dst_step[i + 1];
    src_step[i] = in_dims[i + 1] * src_step[i + 1];
    out_num *= out_dims[i];
  }

  for (int dst_id = 0; dst_id < out_num; dst_id++) {
    int src_id = 0;
    int index_id = dst_id;
    for (int j = 0; j < out_dims.size(); j++) {
      int cur_id = index_id / dst_step[j];
      index_id = index_id % dst_step[j];
      src_id += (cur_id + real_starts[j]) * src_step[j];
    }
    out[dst_id] = input[src_id];
  }
}

class SliceComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string input_ = "Input";
  std::string output_ = "Out";
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
  std::vector<int> decrease_axis_;
  DDim dims_;
87 88 89 90 91 92 93
  std::vector<int> infer_flags_;
  std::string starts_tensor_ = "StartsTensor";
  std::string ends_tensor_ = "EndsTensor";
  // std::string starts_tensor_list_ = "StartsTensorList";
  // std::string ends_tensor_list_ = "EndsTensorList";
  bool use_tensor_;
  bool use_tensor_list_;
94 95 96 97 98 99 100 101

 public:
  SliceComputeTester(const Place& place,
                     const std::string& alias,
                     const std::vector<int>& axes,
                     const std::vector<int>& starts,
                     const std::vector<int>& ends,
                     const std::vector<int>& decrease_axis,
102 103 104 105
                     const DDim& dims,
                     bool use_tensor = false,
                     bool use_tensor_list = false,
                     const std::vector<int>& infer_flags = {})
106 107 108 109 110
      : TestCase(place, alias),
        axes_(axes),
        starts_(starts),
        ends_(ends),
        decrease_axis_(decrease_axis),
111 112 113 114
        dims_(dims),
        infer_flags_(infer_flags),
        use_tensor_(use_tensor),
        use_tensor_list_(use_tensor_list) {}
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

  void RunBaseline(Scope* scope) override {
    auto* out = scope->NewTensor(output_);
    auto* input = scope->FindTensor(input_);
    CHECK(out);
    CHECK(input);
    const auto* input_data = input->data<float>();
    auto in_dims = input->dims();
    auto out_dims = in_dims;
    int dim_value, start, end;

    for (size_t i = 0; i < axes_.size(); ++i) {
      dim_value = out_dims[axes_[i]];
      if (dim_value > 0) {
        start = starts_[i] < 0 ? (starts_[i] + dim_value) : starts_[i];
        end = ends_[i] < 0 ? (ends_[i] + dim_value) : ends_[i];
        start = std::max(start, 0);
        end = std::max(end, 0);
        end = std::min(end, dim_value);
        out_dims[axes_[i]] = end - start;
      }
    }
    if (decrease_axis_.size() > 0) {
      std::vector<int64_t> new_out_shape;
      for (size_t i = 0; i < decrease_axis_.size(); ++i) {
        out_dims[decrease_axis_[i]] = 0;
      }
      for (int i = 0; i < out_dims.size(); ++i) {
        if (out_dims[i] != 0) {
          new_out_shape.push_back(out_dims[i]);
        }
      }
      if (new_out_shape.size() == 0) {
        new_out_shape.push_back(1);
      }
      DDim new_dims;
      new_dims.ConstructFrom(new_out_shape);
      out_dims = new_dims;
    }
    out->Resize(out_dims);
    auto* out_data = out->mutable_data<float>();
    slice_ref(input_data, in_dims.data(), axes_, starts_, ends_, out_data);
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("slice");
    op_desc->SetInput("Input", {input_});
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    if (use_tensor_) {
      op_desc->SetInput("StartsTensor", {starts_tensor_});
      op_desc->SetInput("EndsTensor", {ends_tensor_});
    } else if (use_tensor_list_) {
      std::vector<std::string> starts_tensor_list_;
      std::vector<std::string> ends_tensor_list_;
      for (int i = 0; i < starts_.size(); ++i) {
        starts_tensor_list_.push_back("starts_tensor_list_" +
                                      std::to_string(i));
        ends_tensor_list_.push_back("ends_tensor_list_" + std::to_string(i));
      }
      op_desc->SetInput("StartsTensorList", {starts_tensor_list_});
      op_desc->SetInput("EndsTensorList", {ends_tensor_list_});
    }

    if (infer_flags_.size() > 0) {
      op_desc->SetAttr("infer_flags", infer_flags_);
    }
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    op_desc->SetOutput("Out", {output_});
    op_desc->SetAttr("axes", axes_);
    op_desc->SetAttr("starts", starts_);
    op_desc->SetAttr("ends", ends_);
    op_desc->SetAttr("decrease_axis", decrease_axis_);
  }

  void PrepareData() override {
    std::vector<float> data(dims_.production());

    for (int i = 0; i < dims_.production(); i++) {
      data[i] = i;
    }

    SetCommonTensor(input_, dims_, data.data());
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    if (use_tensor_) {
      SetCommonTensor(starts_tensor_,
                      DDim({static_cast<int64_t>(starts_.size())}),
                      starts_.data());
      SetCommonTensor(ends_tensor_,
                      DDim({static_cast<int64_t>(ends_.size())}),
                      ends_.data());
    } else if (use_tensor_list_) {
      Scope& scope_ = this->scope();
      for (int i = 0; i < starts_.size(); ++i) {
        auto* tensor =
            scope_.NewTensor("starts_tensor_list_" + std::to_string(i));
        tensor->Resize(DDim({1}));
        auto* d = tensor->mutable_data<int>();
        d[0] = starts_[i];
      }
      for (int i = 0; i < ends_.size(); ++i) {
        auto* tensor =
            scope_.NewTensor("ends_tensor_list_" + std::to_string(i));
        tensor->Resize(DDim({1}));
        auto* d = tensor->mutable_data<int>();
        d[0] = ends_[i];
      }
    }
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
  }
};

void test_slice(Place place) {
  std::vector<int> axes({0, 1, 2});
  std::vector<int> starts({2, 2, 2});
  std::vector<int> ends({5, 6, 7});
  std::vector<int> decrease_axis({});
  DDim dims({10, 10, 10});
  std::unique_ptr<arena::TestCase> tester(new SliceComputeTester(
      place, "def", axes, starts, ends, decrease_axis, dims));
  arena::Arena arena(std::move(tester), place, 2e-4);
  arena.TestPrecision();
}

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
void test_slice_tensor(Place place) {
  std::vector<int> axes({0, 1, 2});
  std::vector<int> starts({2, 2, 2});
  std::vector<int> ends({5, 6, 7});

  std::vector<int> decrease_axis({});
  DDim dims({10, 10, 10});
  std::unique_ptr<arena::TestCase> tester(new SliceComputeTester(
      place, "def", axes, starts, ends, decrease_axis, dims, true));
  arena::Arena arena(std::move(tester), place, 2e-4);
  arena.TestPrecision();
}

void test_slice_tensor_list(Place place) {
  std::vector<int> axes({0, 1, 2});
  std::vector<int> starts({2, 2, 2});
  std::vector<int> ends({5, 6, 7});
  std::vector<int> decrease_axis({});
  std::vector<int> infer_flags({});
  DDim dims({10, 10, 10});
  std::unique_ptr<arena::TestCase> tester(new SliceComputeTester(place,
                                                                 "def",
                                                                 axes,
                                                                 starts,
                                                                 ends,
                                                                 decrease_axis,
                                                                 dims,
                                                                 false,
                                                                 true,
                                                                 infer_flags));
  arena::Arena arena(std::move(tester), place, 2e-4);
  arena.TestPrecision();
}

269 270 271 272 273 274 275
TEST(Slice, precision) {
#ifdef LITE_WITH_X86
  Place place(TARGET(kX86));
#endif
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  test_slice(place);
276 277
  test_slice_tensor(place);
  test_slice_tensor_list(place);
278 279 280 281 282
#endif
}

}  // namespace lite
}  // namespace paddle