pool_compute_test.cc 8.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
16
#include <memory>
Y
Yan Chunwei 已提交
17
#include <random>
18
#include "lite/backends/opencl/target_wrapper.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {

void pool_avg(const int padding_height,
              const int padding_width,
              const int stride_height,
              const int stride_width,
              const int ksize_height,
              const int ksize_width,
              const float* input_data,
              const DDim& in_dim,
              float* output_data,
              const DDim& out_dim) {
  const int batch_size = in_dim[0];
  const int input_height = in_dim[2];
  const int input_width = in_dim[3];
  const int output_channels = out_dim[1];
  const int output_height = out_dim[2];
  const int output_width = out_dim[3];

  const size_t input_spatial_size = input_height * input_width;
  const size_t output_spatial_size = output_height * output_width;

  for (int i = 0; i < batch_size; i++) {
    for (int c = 0; c < output_channels; ++c) {
      int channel = i * output_channels + c;
      const float* input_ptr = input_data + channel * input_spatial_size;
      float* output_ptr = output_data + channel * output_spatial_size;

      for (int ph = 0; ph < output_height; ++ph) {
        int hstart = ph * stride_height - padding_height;
        int hend = std::min(hstart + ksize_height, input_height);
        hstart = std::max(hstart, 0);
        for (int pw = 0; pw < output_width; ++pw) {
          int wstart = pw * stride_width - padding_width;
          int wend = std::min(wstart + ksize_width, input_width);
          wstart = std::max(wstart, 0);

          float val = 0.f;
          int count = 0;
          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
              val += input_ptr[h * input_width + w];
              ++count;
            }
          }
          output_ptr[ph * output_width + pw] =
              (count > 0) ? val * (1.f / count) : 0.f;
        }
      }
    }
  }
}

76 77
// buffer
#if 0   // pool_buffer
78
TEST(pool2d_buffer_fp32, compute) {
Y
Yan Chunwei 已提交
79 80 81 82 83 84
  LOG(INFO) << "to get kernel ...";
  auto kernels = KernelRegistry::Global().Create(
      "pool2d", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW));
  ASSERT_FALSE(kernels.empty());

  auto kernel = std::move(kernels.front());
85
  LOG(INFO) << "get kernel:" << kernel->doc();
Y
Yan Chunwei 已提交
86 87 88 89 90 91 92

  lite::Tensor x, out;
  operators::PoolParam param;
  param.x = &x;
  param.output = &out;
  param.global_pooling = true;
  param.pooling_type = "avg";
93
  std::vector<int> paddings = {0, 0, 0, 0};
Y
Yan Chunwei 已提交
94 95
  param.strides = std::vector<int>{1, 1};
  param.ksize = std::vector<int>{7, 7};
96
  param.paddings = std::make_shared<std::vector<int>>(paddings);
Y
Yan Chunwei 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();

  kernel->SetParam(param);
  std::unique_ptr<KernelContext> pool_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(pool_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(pool_context));

  const DDim in_dim = DDim(std::vector<DDim::value_type>{4, 1024, 7, 7});
  const DDim out_dim = DDim(std::vector<DDim::value_type>{4, 1024, 1, 1});
  x.Resize(in_dim);
  out.Resize(out_dim);

  auto* x_data = x.mutable_data<float, cl::Buffer>(TARGET(kOpenCL));

  std::default_random_engine engine;
  std::uniform_real_distribution<float> dist(-5, 5);
  auto* mapped_x = static_cast<float*>(
      TargetWrapperCL::Map(x_data, 0, sizeof(float) * in_dim.production()));
  for (int i = 0; i < in_dim.production(); i++) {
    mapped_x[i] = dist(engine);
  }

  kernel->Launch();

  auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
  auto* out_ptr = param.output->data<float, cl::Buffer>();
  auto it = wait_list->find(out_ptr);
  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    auto& event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
  }

  std::unique_ptr<float[]> out_ref(new float[out_dim.production()]);
  pool_avg(0, 0, 1, 1, 7, 7, mapped_x, in_dim, out_ref.get(), out_dim);
  TargetWrapperCL::Unmap(x_data, mapped_x);
  auto* out_data = out.mutable_data<float, cl::Buffer>();
  auto* mapped_out = static_cast<float*>(
      TargetWrapperCL::Map(out_data, 0, sizeof(float) * out_dim.production()));
  for (int i = 0; i < out_dim.production(); i++) {
    EXPECT_NEAR(mapped_out[i], out_ref[i], 1e-6);
  }
  TargetWrapperCL::Unmap(out_data, mapped_out);
}
146
#endif  // pool_buffer
Y
Yan Chunwei 已提交
147

148
TEST(pool2d_image2d_fp32, compute) {
149 150
  LOG(INFO) << "to get kernel ...";
  auto kernels = KernelRegistry::Global().Create(
151
      "pool2d", TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault));
152 153 154 155
  ASSERT_FALSE(kernels.empty());

  auto kernel = std::move(kernels.front());

156
  LOG(INFO) << "get kernel:" << kernel->doc();
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

  lite::Tensor x, out;
  operators::PoolParam param;
  param.x = &x;
  param.output = &out;
  param.global_pooling = false;
  param.pooling_type = "avg";
  std::vector<int> paddings = {0, 0, 0, 0};
  param.strides = std::vector<int>{1, 1};
  param.ksize = std::vector<int>{7, 7};
  param.paddings = std::make_shared<std::vector<int>>(paddings);

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();

  kernel->SetParam(param);
  std::unique_ptr<KernelContext> pool_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(pool_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(pool_context));

  const DDim in_dim = DDim(std::vector<DDim::value_type>{4, 11, 107, 107});
  const DDim out_dim = DDim(std::vector<DDim::value_type>{4, 11, 101, 101});
  x.Resize(in_dim);
  out.Resize(out_dim);

  std::default_random_engine engine;
  std::uniform_real_distribution<float> dist(-5, 5);
  std::vector<float> input_v(4 * 11 * 107 * 107);
  for (auto& i : input_v) {
    i = dist(engine);
  }

  LOG(INFO) << "prepare input";
  CLImageConverterDefault* default_converter = new CLImageConverterDefault();
  DDim x_image_shape = default_converter->InitImageDimInfoWith(in_dim);
  LOG(INFO) << "x_image_shape = " << x_image_shape[0] << " "
            << x_image_shape[1];
  std::vector<float> x_image_data(x_image_shape.production() * 4);  // 4 : RGBA
  default_converter->NCHWToImage(input_v.data(), x_image_data.data(), in_dim);
  auto* x_image = x.mutable_data<float, cl::Image2D>(
      x_image_shape[0], x_image_shape[1], x_image_data.data());
199
  LOG(INFO) << "x_image:" << x_image;
200 201 202 203 204 205

  DDim out_image_shape = default_converter->InitImageDimInfoWith(out_dim);
  LOG(INFO) << "out_image_shape = " << out_image_shape[0] << " "
            << out_image_shape[1];
  auto* out_image = out.mutable_data<float, cl::Image2D>(out_image_shape[0],
                                                         out_image_shape[1]);
206
  LOG(INFO) << "out_image:" << out_image;
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
  kernel->Launch();

  auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
  auto* out_ptr = param.output->data<float, cl::Image2D>();
  auto it = wait_list->find(out_ptr);
  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    auto& event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
  }

  std::unique_ptr<float[]> out_ref(new float[out_dim.production()]);
  pool_avg(0, 0, 1, 1, 7, 7, input_v.data(), in_dim, out_ref.get(), out_dim);

  const size_t cl_image2d_row_pitch{0};
  const size_t cl_image2d_slice_pitch{0};
  float* out_image_data = new float[out_image_shape.production() * 4];
  TargetWrapperCL::ImgcpySync(out_image_data,
                              out_image,
                              out_image_shape[0],
                              out_image_shape[1],
                              cl_image2d_row_pitch,
                              cl_image2d_slice_pitch,
                              IoDirection::DtoH);
  float* out_data = new float[out_image_shape.production() * 4];
  default_converter->ImageToNCHW(
      out_image_data, out_data, out_image_shape, out_dim);

  for (int i = 0; i < out_dim.production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref[i], 1e-6);
  }
}

Y
Yan Chunwei 已提交
242 243 244
}  // namespace lite
}  // namespace paddle

245
// USE_LITE_KERNEL(pool2d, kOpenCL, kFloat, kNCHW, def);
246
USE_LITE_KERNEL(pool2d, kOpenCL, kFloat, kImageDefault, image2d);