api.cpp 43.2 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "fpga/V2/api.h"
16
#include <memory>
Z
zhangyang 已提交
17
#include "fpga/V2/bias_scale.h"
18
#include "fpga/V2/deconv_filter.h"
Z
zhangyang 已提交
19 20
#include "fpga/V2/filter.h"
#include "fpga/V2/image.h"
Z
zhangyang 已提交
21

Z
zhangyang 已提交
22
namespace paddle_mobile {
H
hanbuhe 已提交
23
namespace fpga {
Z
zhangyang 已提交
24

25
#define USE_RELU 1
26 27
#define USE_BIAS 2

Z
zhangyang 已提交
28 29
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
30
  auto channel = dims[1], height = dims[2], width = dims[3];
31 32 33
  auto data_ptr = image_tensor->data<int8_t>();
  auto external_ptr = reinterpret_cast<int8_t *>(image_tensor->external_data);
  int8_t *p_data = external_ptr == nullptr ? data_ptr : external_ptr;
34

35
  image::format_image<int8_t>(&p_data, channel, height, width);
36
  if (p_data != data_ptr) {
37
    image_tensor->reset_data_ptr(p_data);
38
  }
Z
zhangyang 已提交
39 40
}

41 42 43
void format_ofm(framework::Tensor *ofm_tensor) {
  if (ofm_tensor->type() == type_id<float>()) {
    format_fp32_ofm(ofm_tensor);
44 45
  } else {
    format_int8_ofm(ofm_tensor);
46 47
  }
}
48 49

void format_int8_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
50
  auto dims = ofm_tensor->dims();
51 52
  size_t memory_size = 0;
  if (dims.size() == 4) {
53 54
    auto num = (dims[0] == 0) ? 1 : dims[0], channel = dims[1],
         height = dims[2], width = dims[3];
55
    memory_size = num * height * align_to_x(channel * width, IMAGE_ALIGNMENT) *
56
                  sizeof(int8_t);
57
  } else if (dims.size() == 2) {
58 59
    auto num = (dims[0] == 0) ? 1 : dims[0], channel = dims[1];
    memory_size = num * align_to_x(channel, IMAGE_ALIGNMENT) * sizeof(int8_t);
60 61 62 63 64
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  ofm_tensor->reset_data_ptr(p);
65 66
  ofm_tensor->set_type(type_id<int8_t>().hash_code());
  ofm_tensor->fpga_data_num = memory_size / sizeof(int8_t);
67 68 69
  fpga::fpga_flush(p, memory_size);
}

70
void format_int8_ofm(framework::Tensor *ofm_tensor, framework::DDim dims) {
71 72
  size_t memory_size = 0;
  if (dims.size() == 4) {
73 74 75 76
    auto num = (dims[0] == 0) ? 1 : dims[0], channel = dims[1],
         height = dims[2], width = dims[3];
    memory_size = num * height * align_to_x(channel * width, IMAGE_ALIGNMENT) *
                  sizeof(int8_t);
77
  } else if (dims.size() == 2) {
78 79
    auto num = (dims[0] == 0) ? 1 : dims[0], channel = dims[1];
    memory_size = num * align_to_x(channel, IMAGE_ALIGNMENT) * sizeof(int8_t);
80 81 82 83 84 85 86 87 88 89
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  ofm_tensor->reset_data_ptr(p);
  ofm_tensor->set_type(type_id<int8_t>().hash_code());
  ofm_tensor->fpga_data_num = memory_size / sizeof(int8_t);
  fpga::fpga_flush(p, memory_size);
}

90
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
91 92 93
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
94 95 96 97
    auto num = (dims[0] == 0) ? 1 : dims[0], channel = dims[1],
         height = dims[2], width = dims[3];
    memory_size = num * height * align_to_x(channel * width, IMAGE_ALIGNMENT) *
                  sizeof(float);
98
  } else if (dims.size() == 2) {
99 100
    auto num = (dims[0] == 0) ? 1 : dims[0], channel = dims[1];
    memory_size = num * align_to_x(channel, IMAGE_ALIGNMENT) * sizeof(float);
101 102 103 104 105
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  ofm_tensor->reset_data_ptr(p);
106 107 108
  ofm_tensor->set_type(type_id<float>().hash_code());
  ofm_tensor->fpga_data_num = memory_size / sizeof(float);
  fpga::fpga_flush(p, memory_size);
Z
zhangyang 已提交
109 110
}

Z
zhangyang 已提交
111 112
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
113
  return filter::find_max(filter_ptr, filter_tensor->numel());
Z
zhangyang 已提交
114
}
Z
zhangyang 已提交
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}
int get_deconv_plit_num(framework::Tensor *filter_tensor, int stride) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
  auto dims = filter_tensor->dims();
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
Z
zhangyang 已提交
137 138
}

139 140
int get_deconv_filter_num_per_div(framework::Tensor *filter_tensor,
                                  int group_num, int stride) {
Z
zhangyang 已提交
141
  auto dims = filter_tensor->dims();
142 143 144 145
  auto chw = dims[1] * dims[2] / stride * dims[3] / stride;
  auto num = dims[0] * stride;
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
Z
zhangyang 已提交
146 147
}

148 149
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
Z
zhangyang 已提交
150
}
151

Z
zhangyang 已提交
152 153
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
154 155
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
Z
zhangyang 已提交
156
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
157
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
158
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
159
  size_t memory_size = num * channel * height * width * sizeof(float);
160
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
  filter_tensor->set_type(type_id<int8_t>().hash_code());
}
void format_dwconv_filter(framework::Tensor *filter_tensor, float *scale_ptr) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_dwconv_filter(&new_data, num, height, width, scale_ptr);
  filter_tensor->reset_data_ptr(new_data);
  filter_tensor->set_type(type_id<int16_t>().hash_code());
}

void format_DWDconv_filter(framework::Tensor *filter_tensor, float *scale_ptr,
                           int stride) {
  auto dims = filter_tensor->dims();
  auto num = dims[0], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  fpga_copy(new_data, data_ptr, memory_size);

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, 1, hw);

  num = dims[1];
  int channel = dims[0];

  deconv_filter::DWDconv_format_filter(&new_data, num, channel, height, width,
                                       scale_ptr, stride);

Z
zhangyang 已提交
197
  filter_tensor->reset_data_ptr(new_data);
198
  filter_tensor->set_type(type_id<int16_t>().hash_code());
Z
zhangyang 已提交
199 200
}

Z
zhangyang 已提交
201 202 203 204 205 206 207 208
void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, num, channel, height, width, 1,
                           max_value);
  filter_tensor->reset_data_ptr(new_data);
  filter_tensor->set_type(type_id<int8_t>().hash_code());
}
void format_deconv_filter(framework::Tensor *filter_tensor, float max_value,
                          int group_num, int stride) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
Z
zhangyang 已提交
224
  memcpy(new_data, data_ptr, memory_size);
225 226 227 228 229 230 231 232 233 234 235 236 237 238

  int hw = height * width;
  deconv_filter::deconv_NC_convert(&new_data, num, channel, hw);

  num = dims[1];
  channel = dims[0];
  deconv_filter::deconv_format_filter(
      &new_data, (int)num, (int)channel,          // NOLINT
      (int)height,                                // NOLINT
      (int)width, group_num, max_value, stride);  // NOLINT

  framework::DDim dims_new =
      framework::make_ddim({num, channel, height, width});
  filter_tensor->Resize(dims_new);
Z
zhangyang 已提交
239
  filter_tensor->reset_data_ptr(new_data);
240
  filter_tensor->set_type(type_id<int8_t>().hash_code());
Z
zhangyang 已提交
241 242
}

243 244 245 246 247 248 249
void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}
void format_bias_array(float **bias_array, int num) {
  bias_scale::format_bias_array(bias_array, num);
Z
zhangyang 已提交
250 251
}

Z
zhangyang 已提交
252
void format_concat_output(framework::Tensor *out, int height, int width,
253 254 255 256 257 258 259
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
260
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(int8_t));
261
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
262 263
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
264
  out->set_type(type_id<int8_t>().hash_code());
Z
zhangyang 已提交
265
}
266 267 268
void format_conv_data(framework::Tensor *filter_tensor,
                      framework::Tensor *ofm_tensor, float **bs_ptr,
                      int group) {
Z
zhangyang 已提交
269 270
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_filter(filter_tensor, max_value, group);
271 272 273
  int element_num_per_div = fpga::get_filter_num_per_div(filter_tensor, group);
  fpga::format_bias_scale_array(bs_ptr, element_num_per_div,
                                ofm_tensor->dims()[1]);
274
  fpga::format_ofm(ofm_tensor);
275 276 277 278 279 280 281 282 283 284
}
void format_deconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float **bs_ptr,
                        int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  float max_value = filter_find_max(filter_tensor);
  format_deconv_filter(filter_tensor, max_value, group, sub_conv_n);
  int element_num_per_div =
      get_deconv_filter_num_per_div(filter_tensor, group, sub_conv_n);
  format_bias_scale_array(bs_ptr, element_num_per_div, channel * sub_conv_n);
285
  format_ofm(ofm_tensor);
286 287 288 289 290 291 292 293
}

void format_dwconv_data(framework::Tensor *filter_tensor,
                        framework::Tensor *ofm_tensor, float *scale_ptr,
                        float **bias_ptr) {
  auto channel = ofm_tensor->dims()[1];
  format_dwconv_filter(filter_tensor, scale_ptr);
  format_bias_array(bias_ptr, channel);
294
  format_ofm(ofm_tensor);
295 296 297 298 299 300 301 302 303
}
void format_DWDeconv_data(framework::Tensor *filter_tensor,
                          framework::Tensor *ofm_tensor, float **bs_ptr,
                          int group, int sub_conv_n) {
  int channel = ofm_tensor->dims()[1];
  format_DWDconv_filter(
      filter_tensor,
      (reinterpret_cast<float *>(*bs_ptr) + sub_conv_n * channel), sub_conv_n);
  format_bias_array(bs_ptr, channel);
304
  format_ofm(ofm_tensor);
Z
zhangyang 已提交
305
}
306

307 308 309 310
void expand_conv_arg(ConvArgs *arg) {
  ConvArgs args = *arg;

  auto fpga_bias_scale_len =
311 312 313
      align_to_x(args.filter_num / args.group_num, BS_NUM_ALIGNMENT) *
      args.group_num;
  fpga_bias_scale_len = fpga_bias_scale_len / BIAS_SCALE_DMA_NUM;
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

  auto output_height =
      (args.image.height + args.image.pad_height * 2 - args.kernel.height) /
          args.kernel.stride_h +
      1;
  auto output_width =
      (args.image.width + args.image.pad_width * 2 - args.kernel.width) /
          args.kernel.stride_w +
      1;

  auto filter_per_group = args.filter_num / args.group_num;
  auto channel_per_group = args.image.channels / args.group_num;

  auto image_row_count = args.image.width * args.image.channels;
  auto image_amount_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT);
  auto image_one_pad_per_row = align_to_x(image_row_count, IMAGE_ALIGNMENT) +
                               args.image.pad_width * args.image.channels;
  auto filter_amount_all =
      align_to_x(args.kernel.height * args.kernel.width * channel_per_group,
                 FILTER_ELEMENT_ALIGNMENT);

  auto output_amount_per_row = align_to_x(
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num,
337
      RESULT_ALIGNMENT);
338 339 340 341 342 343 344 345 346

  // find the opt partition strategy
  uint64_t res_win;
  uint64_t res_fit = 0;
  for (res_win = 1; res_win <= output_width; res_win++) {
    if ((align_to_x(
             (args.image.channels *
              (args.kernel.width + (res_win - 1) * args.kernel.stride_w)),
             IMAGE_ALIGNMENT) /
347
             IMAGE_ALIGNMENT +
348 349
         1) *
            args.kernel.height >
350
        256) {
351 352 353 354 355 356 357 358 359 360 361
      break;
    }
  }

  if (res_win != output_width) {
    res_win -= 1;
  }

  if (((res_win % 2) != 0) && (res_win != 1)) {
    res_win = res_win - 1;
  }
362
  //  PADDLE_MOBILE_ENFORCE(res_win >= 2, "window too bigger than fpga volume");
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
  res_fit = res_win;

  auto block_num = (output_width + res_fit - 1) / res_fit;
  auto block_len = res_fit;
  auto block_last = output_width - res_fit * (block_num - 1);

  auto res_amount_per_row =
      (output_width - (args.deconv_tx_param.omit_size) * 2) * args.filter_num;
  auto res_amount_per_row_pad = output_amount_per_row - res_amount_per_row;

  auto image_block_amount_per_row =
      args.kernel.stride_w * res_fit * args.image.channels;
  auto filter_pad_width_mul_channel =
      args.image.pad_width * args.image.channels;
  auto image_amount_per_row_multi_win_first =
      image_amount_per_row *
      (ROW_PARALLEL_NUM * args.kernel.stride_h - args.image.pad_height);
  auto image_amount_per_row_multi_win =
      image_amount_per_row * (ROW_PARALLEL_NUM * args.kernel.stride_h);

  auto image_block_num = block_num;
  auto image_block_len =
      align_to_x((args.image.channels *
                  (args.kernel.width + (block_len - 1) * args.kernel.stride_w)),
                 IMAGE_ALIGNMENT) /
388
          IMAGE_ALIGNMENT +
389 390 391 392 393 394
      1;
  auto image_block_len_last =
      align_to_x(
          (args.image.channels *
           (args.kernel.width + (block_last - 1) * args.kernel.stride_w)),
          IMAGE_ALIGNMENT) /
395
          IMAGE_ALIGNMENT +
396 397 398 399 400 401 402 403 404 405 406 407
      1;
  auto image_win_cnt = block_len;
  auto image_win_cnt_last = block_last;
  auto res_row_data_align4_pad = res_amount_per_row_pad / 8;
  auto prog_full_cnt = 1024 / (filter_amount_all / 16 * 2) - 1;
  if (prog_full_cnt == 511) {
    prog_full_cnt--;
  }
  auto post_prog_full_cnt =
      (512 / (align_to_x(args.filter_num, 4) / 4 * 2) > 2)
          ? (512 / (align_to_x(args.filter_num, 4) / 4 * 2) - 2)
          : 0;
408 409
  auto cmd = 0UL | (args.relu_enabled ? USE_RELU : 0) | USE_BIAS;
  // auto cmd = 0UL | USE_BIAS;
410 411 412 413

  auto deconv_param = ((args.deconv_tx_param.deconv_en) << 16) |
                      ((args.deconv_tx_param.sub_conv_num) << 8) |
                      ((args.deconv_tx_param.omit_size) << 0);
414

415 416 417
  (*arg).driver.filter_per_group = filter_per_group;
  (*arg).driver.channel_per_group = channel_per_group;
  (*arg).driver.image_one_pad_per_row = image_one_pad_per_row;
418 419 420 421 422 423
  (*arg).driver.deconv_param = deconv_param;
  // new
  (*arg).driver.col_padding_up = args.image.pad_width * args.image.channels;
  (*arg).driver.col_padding_down = image_one_pad_per_row;
  (*arg).driver.row_padding_up = args.image.pad_height;
  (*arg).driver.row_padding_down = args.image.pad_height + args.image.height;
424 425
  (*arg).driver.image_block_amount_per_row = image_block_amount_per_row;
  (*arg).driver.filter_pad_width_mul_channel = filter_pad_width_mul_channel;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
  (*arg).driver.image_win_cnt = image_win_cnt;
  (*arg).driver.image_win_cnt_last = image_win_cnt_last;
  (*arg).driver.filter_row = args.kernel.width * args.image.channels;
  (*arg).driver.filter_width = args.kernel.width;
  (*arg).driver.filter_height = args.kernel.height;
  (*arg).driver.skip_window = args.image.channels * args.kernel.stride_w;
  (*arg).driver.stride_h = args.kernel.stride_h;
  (*arg).driver.filter_amount_all = filter_amount_all;
  (*arg).driver.prog_full_cnt = prog_full_cnt;
  (*arg).driver.filter_align = args.filter_num / (4 * PE_COLUMN) +
                               (((args.filter_num % (4 * PE_COLUMN))) ? 1 : 0);
  (*arg).driver.filter_num = args.filter_num;
  (*arg).driver.output_width = output_width;
  (*arg).driver.output_amount_per_row = output_amount_per_row;
  (*arg).driver.res_row_data_align4_pad = res_row_data_align4_pad;
  (*arg).driver.cal_res_num = output_height / ROW_PARALLEL_NUM +
                              ((output_height % ROW_PARALLEL_NUM) ? 1 : 0) - 1;
  (*arg).driver.last_cal_res_row_num =
      (output_height % (ROW_PARALLEL_NUM))
          ? (output_height % (ROW_PARALLEL_NUM))
          : (ROW_PARALLEL_NUM);

  (*arg).driver.post_prog_full_cnt = post_prog_full_cnt;
  (*arg).driver.deconv_skip_row =
      ROW_PARALLEL_NUM *
      args.deconv_tx_param.sub_conv_num;  // paralvl*deconv_group
  (*arg).driver.deconv_res_skip_row =
      args.deconv_tx_param.sub_conv_num *
      output_amount_per_row;  // deconv_group * result_amount_per_row
  (*arg).driver.deconv_ena = args.deconv_tx_param.deconv_en;
  (*arg).driver.deconv_dump = args.deconv_tx_param.omit_size;
  (*arg).driver.output_address_phy = vaddr_to_paddr(args.output.address) +
                                     args.deconv_tx_param.out_addr_offset;
  (*arg).driver.output_height = output_height;
  (*arg).driver.result_amount_per_row_multi_para =
      output_amount_per_row / RESULT_ALIGNMENT *
      (args.deconv_tx_param.deconv_en ? (*arg).driver.deconv_skip_row
                                      : ROW_PARALLEL_NUM);
  (*arg).driver.sb_address_phy = vaddr_to_paddr(args.sb_address);
  (*arg).driver.fpga_bias_scale_len = fpga_bias_scale_len;
  (*arg).driver.filter_amount_whole = filter_amount_all;
  (*arg).driver.filter_address_phy = vaddr_to_paddr(args.filter_address);
  (*arg).driver.filters_amount_whole =
      filter_amount_all * (*arg).driver.filter_align * (4 * PE_COLUMN);
  (*arg).driver.image_address_phy = vaddr_to_paddr(args.image.address);
  (*arg).driver.image_hight = args.image.height;
  (*arg).driver.image_amount_per_row = image_amount_per_row;
473 474 475
  (*arg).driver.image_amount_per_row_multi_win_first =
      image_amount_per_row_multi_win_first;
  (*arg).driver.image_amount_per_row_multi_win = image_amount_per_row_multi_win;
476
  (*arg).driver.filter_pad_hight = args.image.pad_height;
477 478 479
  (*arg).driver.image_block_num = image_block_num;
  (*arg).driver.image_block_len = image_block_len;
  (*arg).driver.image_block_len_last = image_block_len_last;
480

481 482 483 484 485
  (*arg).driver.cmd = cmd;
}  // expand_conv_arg()

void expand_EW_arg(EWAddArgs *arg) {
  EWAddArgs args = *arg;
486
  uint64_t cmd = args.relu_enabled ? USE_RELU : 0;
487 488 489 490 491 492 493 494 495 496 497
  uint64_t datalen = (uint64_t)args.image0.width *
                     (uint64_t)args.image0.height *
                     (uint64_t)args.image0.channels;
  uint64_t coefficient = (uint64_t)args.const0 << 32 | (uint64_t)args.const1;
  uint64_t image0_address_phy = vaddr_to_paddr(args.image0.address);
  uint64_t image1_address_phy = vaddr_to_paddr(args.image1.address);
  uint64_t output_address_phy = vaddr_to_paddr(args.output.address);

  uint64_t image_amount_per_row =
      align_to_x((uint64_t)args.image0.width * (uint64_t)args.image0.channels,
                 IMAGE_ALIGNMENT);
498 499
  uint64_t image_amount_per_row_p = align_to_x(
      (uint64_t)args.image0.width * (uint64_t)args.image0.channels, 16);
500 501 502 503 504 505 506 507
  uint64_t image_image_pixel = ((uint64_t)args.image0.channels << 32) |
                               ((uint64_t)args.image0.width << 16) |
                               (uint64_t)args.image0.height;

  (*arg).driver.image0_address_phy = image0_address_phy;
  (*arg).driver.image1_address_phy = image1_address_phy;
  (*arg).driver.datalen = datalen;
  (*arg).driver.image_image_pixel = image_image_pixel;
508 509
  (*arg).driver.image_amount_per_row =
      (uint64_t)image_amount_per_row | (uint64_t)(image_amount_per_row_p << 32);
510 511 512 513
  (*arg).driver.output_address_phy = output_address_phy;
  (*arg).driver.coefficient = coefficient;
  (*arg).driver.cmd = cmd;
}  // expand_EW_arg
Z
zhangyang 已提交
514

Z
zhangyang 已提交
515 516
void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
517 518
                    bool relu_enabled, int group_num, int stride_h,
                    int stride_w, int padding_h, int padding_w, float *bs_ptr) {
519
  auto input_ptr = input->data<int8_t>();
520
  auto filter_ptr = filter->data<int8_t>();
521
  auto out_ptr = out->data<int8_t>();
522
  auto deleter = [](void *p) { fpga_free(p); };
523 524

  arg->group_num = (uint32_t)group_num;
525
  // Either group_num or split_num = 1;
526
  PADDLE_MOBILE_ENFORCE(group_num == 1, "group_num is not equal to 1");
527
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
528 529 530
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
531
  arg->conv_arg =
532
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT
533

534 535 536 537
  arg->shared_conv_arg = std::shared_ptr<ConvArgs>(arg->conv_arg, deleter);

  memset(arg->conv_arg, 0, arg->split_num * sizeof(struct ConvArgs));

538 539 540
  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
541 542
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];
543 544

  int n = arg->split_num;
545
  arg->concat_arg.images_in =
546
      static_cast<int8_t **>(fpga_malloc(n * sizeof(int *)));
547
  arg->concat_arg.scales_in =
548
      static_cast<float **>(fpga_malloc(n * sizeof(float *)));
549
  arg->concat_arg.channel_num =
550 551 552 553 554 555 556 557 558 559 560 561 562
      static_cast<uint32_t *>(fpga_malloc(n * sizeof(uint32_t)));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.images_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.scales_in), deleter));
  arg->vector_concat_space.push_back(std::shared_ptr<char>(
      reinterpret_cast<char *>(arg->concat_arg.channel_num), deleter));

  auto channel = (int)out->dims()[1];  // NOLINT
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
      (int)(filter->dims()[1] * filter->dims()[2] *  // NOLINT
            filter->dims()[3]));
563 564

  for (int i = 0; i < n; i++) {
565
    arg->conv_arg[i].relu_enabled = relu_enabled;
Z
zhangyang 已提交
566 567 568 569 570 571
    arg->conv_arg[i].group_num = (uint32_t)group_num;
    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_arg[i].image.address = input_ptr;
572
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
Z
zhangyang 已提交
573 574
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
575
    arg->conv_arg[i].image.scale_address = input->scale;
Z
zhangyang 已提交
576 577
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;
578 579 580 581
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = (uint32_t)(
        i == n - 1 ? channel - (n - 1) * filter_num_per_div  // NOLINT
                   : filter_num_per_div);
Z
zhangyang 已提交
582

583 584 585 586 587 588 589 590 591 592 593
    size_t filter_size =
        element_num *
        align_to_x(arg->conv_arg[i].filter_num, FILTER_NUM_ALIGNMENT) *
        sizeof(int8_t);
    auto filter_head = &(
        (int8_t *)filter_ptr)[i * element_num * filter_num_per_div];  // NOLINT
    arg->conv_arg[i].filter_address = fpga_malloc(filter_size);
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].filter_address), deleter));
    memcpy(arg->conv_arg[i].filter_address, filter_head, filter_size);
    fpga_flush(arg->conv_arg[i].filter_address, filter_size);
Z
zhangyang 已提交
594

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    size_t bs_size = 2 *
                     align_to_x(arg->conv_arg[i].filter_num, BS_NUM_ALIGNMENT) *
                     sizeof(float);
    auto bs_head = &bs_ptr[i * filter_num_per_div * 2];
    arg->conv_arg[i].sb_address = fpga_malloc(bs_size);
    arg->vector_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->conv_arg[i].sb_address), deleter));
    memcpy(arg->conv_arg[i].sb_address, bs_head, bs_size);
    fpga_flush(arg->conv_arg[i].sb_address, bs_size);

    if (n > 1) {
      arg->conv_arg[i].output.scale_address =
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
      arg->conv_arg[i].output.address =
          fpga_malloc(out->dims()[2] *
                      align_to_x((int)(out->dims()[3] *  // NOLINT
                                       arg->conv_arg[i].filter_num),
                                 IMAGE_ALIGNMENT) *
613
                      sizeof(int8_t));
614 615 616 617 618 619 620 621 622 623 624
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.scale_address),
          deleter));
      arg->vector_conv_space.push_back(std::shared_ptr<char>(
          reinterpret_cast<char *>(arg->conv_arg[i].output.address), deleter));
    } else {
      arg->conv_arg[i].output.scale_address = out->scale;
      arg->conv_arg[i].output.address = out_ptr;
    }

    arg->concat_arg.images_in[i] =
625
        (int8_t *)arg->conv_arg[i].output.address;  // NOLINT
626 627 628 629
    arg->concat_arg.scales_in[i] = arg->conv_arg[i].output.scale_address;
    arg->concat_arg.channel_num[i] = arg->conv_arg[i].filter_num;

    expand_conv_arg(&arg->conv_arg[i]);
630
  }
631 632 633 634 635 636
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
}  // fill_split_arg

void fill_deconv_arg(struct DeconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
637 638
                     bool relu_enabled, int group_num, int stride_h,
                     int stride_w, int padding_h, int padding_w,
639
                     float *bs_ptr) {
640
  auto input_ptr = input->data<int8_t>();
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
  auto filter_ptr = filter->data<int8_t>();
  auto deleter = [](void *p) { fpga_free(p); };

  arg->group_num = (uint32_t)group_num;
  arg->sub_conv_num = (uint32_t)stride_h;
  arg->filter_num = (uint32_t)filter->dims()[0];
  uint32_t sub_conv_num = arg->sub_conv_num;
  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
      (int)filter->dims()[3], stride_w);  // NOLINT

  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT

  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT

  auto sub_channels = (int)input->dims()[1];  // NOLINT
  uint32_t omit_size = arg->omit_size;
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
  int sub_filter_num = sub_conv_num * (arg->filter_num);

  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, sub_output_height * sub_conv_num, real_out_width});
671 672
  fpga::format_int8_ofm(out, dims_out_new);
  auto out_ptr = out->data<int8_t>();
673
  arg->output.address =
674 675
      (int8_t *)out_ptr +  // NOLINT
      omit_size * sizeof(int8_t) *
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));
  arg->output.scale_address = out->scale;

  uint32_t conv_output_size =
      (align_to_x(sub_output_width * sub_filter_num, IMAGE_ALIGNMENT)) *
      sub_output_height;
  uint32_t split_num =
      group_num == 1 ? (uint32_t)get_deconv_plit_num(filter, sub_conv_num) : 1;

  for (int i = 0; i < sub_conv_num; ++i) {
    arg->split_conv_args.push_back(std::make_shared<SplitConvArgs>());
    arg->split_conv_args[i]->filter_num =
        (arg->sub_conv_num) * (arg->filter_num);
    arg->split_conv_args[i]->group_num = (uint32_t)group_num;
    arg->split_conv_args[i]->split_num = split_num;
    arg->split_conv_args[i]->concat_arg.height = sub_output_height;
    arg->split_conv_args[i]->concat_arg.width = sub_output_width;
    arg->split_conv_args[i]->concat_arg.image_num = split_num;

    arg->split_conv_args[i]->conv_arg =
        static_cast<ConvArgs *>(fpga_malloc(split_num * sizeof(ConvArgs)));
    arg->split_conv_args[i]->concat_arg.images_in =
698
        static_cast<int8_t **>(fpga_malloc(split_num * sizeof(int8_t *)));
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
    arg->split_conv_args[i]->concat_arg.scales_in =
        static_cast<float **>(fpga_malloc(split_num * sizeof(float *)));
    arg->split_conv_args[i]->concat_arg.channel_num =
        static_cast<uint32_t *>(fpga_malloc(split_num * sizeof(uint32_t)));
    arg->split_conv_args[i]->shared_conv_arg =
        std::shared_ptr<ConvArgs>(arg->split_conv_args[i]->conv_arg, deleter);
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.images_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.scales_in),
            deleter));
    arg->split_conv_args[i]->vector_concat_space.push_back(
        std::shared_ptr<char>(
            reinterpret_cast<char *>(
                arg->split_conv_args[i]->concat_arg.channel_num),
            deleter));
  }

  auto filter_num_per_div =
      (uint32_t)get_deconv_filter_num_per_div(filter, group_num, stride_w);
  int element_num = get_aligned_filter_element_num(
      (int)(sub_channels * sub_filter_width * sub_filter_width));  // NOLINT

  int chw = sub_channels * sub_filter_width * sub_filter_width;
  int division_capacity = filter::calc_division_capacity(chw);
  int num_per_div_before_alignment =
      filter::calc_num_per_div(sub_filter_num, group_num, division_capacity);
  int num_per_div_after_alignment =
      align_to_x(num_per_div_before_alignment, FILTER_NUM_ALIGNMENT);
  int div_num = (sub_filter_num + num_per_div_before_alignment - 1) /
                num_per_div_before_alignment;
  int residual = sub_filter_num % num_per_div_before_alignment;
  int num_after_alignment = num_per_div_after_alignment *
                                ((residual == 0) ? div_num : (div_num - 1)) +
                            align_to_x(residual, FILTER_NUM_ALIGNMENT);

  int filter_sub_conv_offset = element_num * num_after_alignment;
  uint32_t out_addr_offset = 0;
  for (int i = 0; i < sub_conv_num; ++i) {
    if (sub_conv_num == 1) {
      arg->split_conv_args[i]->output.address = arg->output.address;
      arg->split_conv_args[i]->output.scale_address = arg->output.scale_address;
      out_addr_offset = 0;

    } else {
      out_addr_offset =
750
          sizeof(int8_t) * (sub_conv_num - 1 - i) *
751 752 753 754 755 756 757 758 759 760 761 762 763
          (align_to_x(real_out_width * arg->filter_num, IMAGE_ALIGNMENT));

      arg->split_conv_args[i]->output.address = out_ptr;
      arg->split_conv_args[i]->output.scale_address =
          static_cast<float *>(fpga_malloc(2 * sizeof(float)));
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->output.scale_address),
              deleter));
    }

    for (int j = 0; j < split_num; ++j) {
764 765 766 767 768 769 770 771
      // arg->split_conv_args[i]->conv_arg[j].output.activation.activation_type
      // =
      //    activation_enable;
      // arg->split_conv_args[i]
      //     ->conv_arg[j]
      //    .output.activation.leaky_relu_negative_slope =
      //    leaky_relu_negative_slope;
      arg->split_conv_args[i]->conv_arg[j].relu_enabled = relu_enabled;
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
      arg->split_conv_args[i]->conv_arg[j].group_num = (uint32_t)group_num;

      arg->split_conv_args[i]->conv_arg[j].kernel.width =
          (uint32_t)sub_filter_width;
      arg->split_conv_args[i]->conv_arg[j].kernel.height =
          (uint32_t)sub_filter_width;
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_w = 1;
      arg->split_conv_args[i]->conv_arg[j].kernel.stride_h = 1;

      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.deconv_en = 1;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.sub_conv_num =
          sub_conv_num;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.omit_size =
          omit_size;
      arg->split_conv_args[i]->conv_arg[j].deconv_tx_param.out_addr_offset =
          out_addr_offset;

      arg->split_conv_args[i]->conv_arg[j].image.scale_address = input->scale;
      arg->split_conv_args[i]->conv_arg[j].image.channels =
          (uint32_t)sub_channels;
      arg->split_conv_args[i]->conv_arg[j].image.width =
          (uint32_t)input->dims()[3];
      arg->split_conv_args[i]->conv_arg[j].image.height =
          (uint32_t)input->dims()[2];
      arg->split_conv_args[i]->conv_arg[j].image.pad_width = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.pad_height = (uint32_t)sub_pad;
      arg->split_conv_args[i]->conv_arg[j].image.address = input_ptr;

      arg->split_conv_args[i]->conv_arg[j].filter_scale_address = filter->scale;
      arg->split_conv_args[i]->conv_arg[j].filter_num =
          (uint32_t)(j == split_num - 1
                         ? sub_filter_num - (split_num - 1) * filter_num_per_div
                         : filter_num_per_div);

      size_t filter_size =
          element_num *
          align_to_x(arg->split_conv_args[i]->conv_arg[j].filter_num,
                     FILTER_NUM_ALIGNMENT) *
          sizeof(int8_t);
      auto filter_head = &((
          int8_t *)filter_ptr)[j * element_num * filter_num_per_div +  // NOLINT
                               i * filter_sub_conv_offset];
      arg->split_conv_args[i]->conv_arg[j].filter_address =
          fpga_malloc(filter_size);
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].filter_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].filter_address, filter_head,
             filter_size);
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].filter_address,
                 filter_size);

      size_t bs_align_num = align_to_x(
          arg->split_conv_args[i]->conv_arg[j].filter_num, BS_NUM_ALIGNMENT);
      size_t bs_size = 2 * bs_align_num * sizeof(float);
      auto bs_head = &bs_ptr[j * filter_num_per_div * 2];

      arg->split_conv_args[i]->conv_arg[j].sb_address = fpga_malloc(bs_size);
      arg->split_conv_args[i]->vector_conv_space.push_back(
          std::shared_ptr<char>(
              reinterpret_cast<char *>(
                  arg->split_conv_args[i]->conv_arg[j].sb_address),
              deleter));

      memcpy(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_head, bs_size);
      fpga_flush(arg->split_conv_args[i]->conv_arg[j].sb_address, bs_size);

      if (split_num == 1) {
        arg->split_conv_args[i]->conv_arg[j].output.address =
            arg->split_conv_args[i]->output.address;
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            arg->split_conv_args[i]->output.scale_address;
      } else {
        arg->split_conv_args[i]->conv_arg[j].output.address =
849
            fpga_malloc(conv_output_size * sizeof(int8_t));
850 851 852 853 854 855 856 857 858 859 860 861 862
        arg->split_conv_args[i]->conv_arg[j].output.scale_address =
            static_cast<float *>(fpga_malloc(2 * sizeof(float)));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.address),
                deleter));
        arg->split_conv_args[i]->vector_conv_space.push_back(
            std::shared_ptr<char>(
                reinterpret_cast<char *>(
                    arg->split_conv_args[i]->conv_arg[j].output.scale_address),
                deleter));
      }
863
      arg->split_conv_args[i]->concat_arg.images_in[j] = static_cast<int8_t *>(
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
          arg->split_conv_args[i]->conv_arg[j].output.address);
      arg->split_conv_args[i]->concat_arg.scales_in[j] =
          arg->split_conv_args[i]->conv_arg[j].output.scale_address;
      arg->split_conv_args[i]->concat_arg.channel_num[j] =
          arg->split_conv_args[i]->conv_arg[j].filter_num;

      expand_conv_arg(&(arg->split_conv_args[i]->conv_arg[j]));
    }

    arg->split_conv_args[i]->concat_arg.image_out =
        arg->split_conv_args[i]->output.address;
    arg->split_conv_args[i]->concat_arg.scale_out =
        arg->split_conv_args[i]->output.scale_address;
  }
  filter->reset_data_ptr(nullptr);
  fpga_free(bs_ptr);
}  // fill_deconv_arg

void fill_dwconv_arg(struct DWconvArgs *arg, framework::Tensor *input,
                     framework::Tensor *out, framework::Tensor *filter,
884 885
                     bool relu_enabled, int stride_h, int stride_w,
                     int padding_h, int padding_w, float *bias_ptr) {
886
  auto filter_ptr = filter->data<int16_t>();
887
  auto input_ptr = input->data<int8_t>();
888
  auto output_ptr = out->data<int8_t>();
889
  arg->sub_conv_num = 1;
890 891
  arg->relu_enabled = relu_enabled;
  // arg->output.activation.activation_type = activation_enable;
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
  arg->bias_address = bias_ptr;
  arg->filter_address = filter_ptr;
  arg->kernel.height = (uint32_t)filter->dims()[2];
  arg->kernel.width = (uint32_t)filter->dims()[3];
  arg->kernel.stride_h = (uint32_t)stride_h;
  arg->kernel.stride_w = (uint32_t)stride_w;
  arg->image.address = input_ptr;
  arg->image.channels = (uint32_t)input->dims()[1];
  arg->image.height = (uint32_t)input->dims()[2];
  arg->image.width = (uint32_t)input->dims()[3];
  arg->image.pad_height = (uint32_t)padding_h;
  arg->image.pad_width = (uint32_t)padding_w;
  arg->image.scale_address = input->scale;
  arg->output.address = output_ptr;
  arg->output.scale_address = out->scale;
}  // end dwconv arg fill

void fill_DWDeconv_arg(struct DWDeconvArgs *arg, framework::Tensor *input,
                       framework::Tensor *out, framework::Tensor *filter,
911 912
                       bool relu_enabled, int stride_h, int stride_w,
                       int padding_h, int padding_w, float *bias_ptr) {
913
  auto filter_ptr = filter->data<int8_t>();
914
  auto input_ptr = input->data<int8_t>();
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

  auto deleter = [](void *p) { fpga_free(p); };

  arg->group_num = (uint32_t)filter->dims()[0];
  arg->sub_conv_num = (uint32_t)stride_w;
  arg->filter_num = (uint32_t)filter->dims()[0];

  int sub_conv_num = stride_w;

  int sub_pad =
      deconv_filter::deconv_calc_sub_pad((int)filter->dims()[3],  // NOLINT
                                         padding_w, stride_w);
  auto sub_filter_width = (uint32_t)deconv_filter::deconv_get_sub_filter_axis(
      (int)filter->dims()[3], stride_w);  // NOLINT

  auto sub_output_width = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[3], sub_pad, sub_filter_width);  // NOLINT
  auto sub_output_height = (uint32_t)deconv_filter::deconv_get_sub_out_axis(
      (int)input->dims()[2], sub_pad, sub_filter_width);  // NOLINT

  arg->sub_output_width = (uint32_t)sub_output_width;
  arg->sub_output_height = (uint32_t)sub_output_height;
  arg->omit_size = (uint32_t)deconv_filter::deconv_get_omit(
      stride_w, (int)filter->dims()[3], padding_w);  // NOLINT

  auto sub_channels = (int)input->dims()[1];  // NOLINT
  uint32_t omit_size = arg->omit_size;
  int real_out_width = sub_output_width * sub_conv_num - 2 * omit_size;
  int real_out_height = sub_output_height * sub_conv_num - 2 * omit_size;
  int sub_filter_num = sub_conv_num * (arg->filter_num);

  framework::DDim dims_out_new = framework::make_ddim(
      {1, arg->filter_num, real_out_height, real_out_width});
948 949
  fpga::format_int8_ofm(out, dims_out_new);
  auto out_ptr = out->data<int8_t>();
950 951 952 953 954 955 956 957 958 959 960 961

  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;

  int filter_offset = sub_filter_width * sub_filter_width *
                      align_to_x(sub_channels, FILTER_ELEMENT_ALIGNMENT) *
                      arg->sub_conv_num;

  for (int i = 0; i < sub_conv_num; ++i) {
    arg->dw_conv_args.push_back(std::make_shared<DWconvArgs>());

    arg->dw_conv_args[i]->sub_conv_num = sub_conv_num;
962 963 964 965 966
    arg->dw_conv_args[i]->relu_enabled = relu_enabled;
    // arg->dw_conv_args[i]->output.activation.activation_type =
    // activation_enable;
    // arg->dw_conv_args[i]->output.activation.leaky_relu_negative_slope =
    //     leaky_relu_negative_slope;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    arg->dw_conv_args[i]->bias_address = bias_ptr;

    arg->dw_conv_args[i]->filter_address =
        fpga_malloc(filter_offset * sizeof(int16_t));
    memcpy(arg->dw_conv_args[i]->filter_address,
           (reinterpret_cast<half *>(filter_ptr) + i * filter_offset),
           filter_offset * sizeof(int16_t));
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->dw_conv_args[i]->filter_address),
        deleter));

    arg->dw_conv_args[i]->kernel.height = (uint32_t)sub_filter_width;
    arg->dw_conv_args[i]->kernel.width = (uint32_t)sub_filter_width;

    arg->dw_conv_args[i]->kernel.stride_h = (uint32_t)1;
    arg->dw_conv_args[i]->kernel.stride_w = (uint32_t)1;
    arg->dw_conv_args[i]->image.address = input_ptr;
    arg->dw_conv_args[i]->image.channels = (uint32_t)input->dims()[1];
    arg->dw_conv_args[i]->image.height = (uint32_t)input->dims()[2];
    arg->dw_conv_args[i]->image.width = (uint32_t)input->dims()[3];

    arg->dw_conv_args[i]->image.pad_height = sub_pad;
    arg->dw_conv_args[i]->image.pad_width = sub_pad;
    arg->dw_conv_args[i]->image.scale_address = input->scale;

    arg->dw_conv_args[i]->output.address =
        fpga_malloc(sub_output_height *
                    align_to_x(sub_output_width * sub_channels * sub_conv_num,
                               IMAGE_ALIGNMENT) *
996
                    sizeof(int8_t));
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    arg->dw_conv_args[i]->output.scale_address =
        static_cast<float *>(fpga_malloc(2 * sizeof(float)));
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.address),
        deleter));
    arg->vector_dw_conv_space.push_back(std::shared_ptr<char>(
        reinterpret_cast<char *>(arg->dw_conv_args[i]->output.scale_address),
        deleter));
  }

  // arg->output.scale_address = out->scale;
}  // end dwconv arg fill
1009

H
hanbuhe 已提交
1010
}  // namespace fpga
Z
zhangyang 已提交
1011
}  // namespace paddle_mobile