elementwise_compute.cu 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <map>
#include <vector>
#include "lite/backends/cuda/math/elementwise.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/elementwise_compute.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

inline DDim trim_trailing_singular_dims(const DDim& dims) {
  // Remove trailing dimensions of size 1 for y
  auto actual_dims_size = dims.size();
  for (; actual_dims_size != 0; --actual_dims_size) {
    if (dims[actual_dims_size - 1] != 1) break;
  }

  std::vector<int64_t> trim_dims;
  trim_dims.resize(actual_dims_size);
  for (int i = 0; i < actual_dims_size; ++i) {
    trim_dims[i] = dims[i];
  }
  if (trim_dims.size() == 0) {
    return DDim();
  }
  return DDim(trim_dims);
}

inline bool is_broadcast(const DDim& x_dims,
                         const DDim& y_dims,
                         int axis,
                         int* pre,
                         int* n,
                         int* post) {
  if (axis < 0) {
    axis = x_dims.size() - y_dims.size();
  }
  DDim y_dim_trim = trim_trailing_singular_dims(y_dims);
  axis = (y_dim_trim.size() == 0) ? x_dims.size() : axis;
  if (x_dims.size() == y_dim_trim.size()) {
    return false;
  }
  *pre = 1;
  *n = 1;
  *post = 1;
  for (int i = 0; i < axis; ++i) {
    (*pre) *= x_dims[i];
  }
  for (int i = 0; i < y_dim_trim.size(); ++i) {
    CHECK_EQ(x_dims[i + axis], y_dim_trim[i])
        << "Broadcast dimension mismatch.";
    (*n) *= y_dim_trim[i];
  }
  for (int i = axis + y_dim_trim.size(); i < x_dims.size(); ++i) {
    (*post) *= x_dims[i];
  }
  return true;
}

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#define ELEMENTWISE_COMPUTE(OP)                                    \
  auto& param = this->Param<param_t>();                            \
  auto& ctx = this->ctx_->template As<CUDAContext>();              \
  auto stream = ctx.exec_stream();                                 \
  const lite::Tensor* x = param.X;                                 \
  const lite::Tensor* y = param.Y;                                 \
  lite::Tensor* out = param.Out;                                   \
  int axis = param.axis;                                           \
  auto* x_data = x->data<float>();                                 \
  auto* y_data = y->data<float>();                                 \
  auto out_data = out->mutable_data<float>(TARGET(kCUDA));         \
  int pixel_num = x->numel();                                      \
  int pre = 1;                                                     \
  int n = pixel_num;                                               \
  int post = 1;                                                    \
  if (is_broadcast(x->dims(), y->dims(), axis, &pre, &n, &post)) { \
    lite::cuda::math::elementwise(                                 \
        x_data, y_data, out_data, pre, n, post, OP, stream);       \
  } else {                                                         \
    lite::cuda::math::elementwise(                                 \
        x_data, y_data, out_data, 1, pixel_num, 1, OP, stream);    \
  }

#define ELEMENTWISE_COMPUTE_ACT(OP)                                  \
97 98 99 100 101 102 103 104 105 106 107 108 109 110
  auto& param = this->Param<param_t>();                              \
  auto& ctx = this->ctx_->template As<CUDAContext>();                \
  auto stream = ctx.exec_stream();                                   \
  const lite::Tensor* x = param.X;                                   \
  const lite::Tensor* y = param.Y;                                   \
  lite::Tensor* out = param.Out;                                     \
  int axis = param.axis;                                             \
  auto* x_data = x->data<float>();                                   \
  auto* y_data = y->data<float>();                                   \
  auto out_data = out->mutable_data<float>(TARGET(kCUDA));           \
  int pixel_num = x->numel();                                        \
  int pre = 1;                                                       \
  int n = pixel_num;                                                 \
  int post = 1;                                                      \
111 112 113 114
  auto act = param.act_type;                                         \
  if (is_broadcast(x->dims(), y->dims(), axis, &pre, &n, &post)) {   \
    lite::cuda::math::elementwise_act(                               \
        x_data, y_data, out_data, pre, n, post, act, OP, stream);    \
115
  } else {                                                           \
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    lite::cuda::math::elementwise_act(                               \
        x_data, y_data, out_data, 1, pixel_num, 1, act, OP, stream); \
  }

#define ELEMENTWISE_COMPUTE_NHWC(OP)                               \
  std::map<int, int> pos_map = {{0, 0}, {1, 3}, {2, 1}, {3, 2}};   \
  auto& param = this->Param<param_t>();                            \
  auto& ctx = this->ctx_->template As<CUDAContext>();              \
  auto stream = ctx.exec_stream();                                 \
  const lite::Tensor* x = param.X;                                 \
  const lite::Tensor* y = param.Y;                                 \
  lite::Tensor* out = param.Out;                                   \
  int axis = param.axis;                                           \
  if (axis < 0) axis = x->dims().size() - y->dims().size();        \
  CHECK(axis >= 0) << "invalid axis of elementwise op";            \
  axis = pos_map[axis];                                            \
  auto* x_data = x->data<float>();                                 \
  auto* y_data = y->data<float>();                                 \
  auto out_data = out->mutable_data<float>(TARGET(kCUDA));         \
  int pixel_num = x->numel();                                      \
  int pre = 1;                                                     \
  int n = pixel_num;                                               \
  int post = 1;                                                    \
  if (is_broadcast(x->dims(), y->dims(), axis, &pre, &n, &post)) { \
    lite::cuda::math::elementwise(                                 \
        x_data, y_data, out_data, pre, n, post, OP, stream);       \
  } else {                                                         \
    lite::cuda::math::elementwise(                                 \
        x_data, y_data, out_data, 1, pixel_num, 1, OP, stream);    \
145 146
  }

147
#define ELEMENTWISE_COMPUTE_ACT_NHWC(OP)                             \
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  std::map<int, int> pos_map = {{0, 0}, {1, 3}, {2, 1}, {3, 2}};     \
  auto& param = this->Param<param_t>();                              \
  auto& ctx = this->ctx_->template As<CUDAContext>();                \
  auto stream = ctx.exec_stream();                                   \
  const lite::Tensor* x = param.X;                                   \
  const lite::Tensor* y = param.Y;                                   \
  lite::Tensor* out = param.Out;                                     \
  int axis = param.axis;                                             \
  if (axis < 0) axis = x->dims().size() - y->dims().size();          \
  CHECK(axis >= 0) << "invalid axis of elementwise op";              \
  axis = pos_map[axis];                                              \
  auto* x_data = x->data<float>();                                   \
  auto* y_data = y->data<float>();                                   \
  auto out_data = out->mutable_data<float>(TARGET(kCUDA));           \
  int pixel_num = x->numel();                                        \
  int pre = 1;                                                       \
  int n = pixel_num;                                                 \
  int post = 1;                                                      \
166 167 168 169
  auto act = param.act_type;                                         \
  if (is_broadcast(x->dims(), y->dims(), axis, &pre, &n, &post)) {   \
    lite::cuda::math::elementwise_act(                               \
        x_data, y_data, out_data, pre, n, post, act, OP, stream);    \
170
  } else {                                                           \
171 172
    lite::cuda::math::elementwise_act(                               \
        x_data, y_data, out_data, 1, pixel_num, 1, act, OP, stream); \
173 174 175
  }

void ElementwiseAddCompute::Run() {
176
  ELEMENTWISE_COMPUTE(lite::cuda::math::BinaryOperation::kADD)
177 178 179 180 181
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

void ElementwiseAddComputeNHWC::Run() {
182
  ELEMENTWISE_COMPUTE_NHWC(lite::cuda::math::BinaryOperation::kADD)
183 184 185 186
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

W
Wilber 已提交
187
void ElementwiseSubCompute::Run() {
188
  ELEMENTWISE_COMPUTE(lite::cuda::math::BinaryOperation::kSUB)
W
Wilber 已提交
189 190 191 192 193
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

void ElementwiseSubComputeNHWC::Run() {
194
  ELEMENTWISE_COMPUTE_NHWC(lite::cuda::math::BinaryOperation::kSUB)
W
Wilber 已提交
195 196 197 198
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

199
void ElementwiseMulCompute::Run() {
200
  ELEMENTWISE_COMPUTE(lite::cuda::math::BinaryOperation::kMUL)
201 202 203 204 205
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

void ElementwiseMulComputeNHWC::Run() {
206 207 208 209 210 211 212 213 214 215 216 217 218
  ELEMENTWISE_COMPUTE_NHWC(lite::cuda::math::BinaryOperation::kMUL)
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

void ElementwiseAddActivationCompute::Run() {
  ELEMENTWISE_COMPUTE_ACT(lite::cuda::math::BinaryOperation::kADD)
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

void ElementwiseAddActivationComputeNHWC::Run() {
  ELEMENTWISE_COMPUTE_ACT_NHWC(lite::cuda::math::BinaryOperation::kADD)
219 220 221 222
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

223 224
void ElementwiseSubActivationCompute::Run() {
  ELEMENTWISE_COMPUTE_ACT(lite::cuda::math::BinaryOperation::kSUB)
225 226 227 228
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

229 230
void ElementwiseSubActivationComputeNHWC::Run() {
  ELEMENTWISE_COMPUTE_ACT_NHWC(lite::cuda::math::BinaryOperation::kSUB)
231 232 233 234
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

235 236
void ElementwiseMulActivationCompute::Run() {
  ELEMENTWISE_COMPUTE_ACT(lite::cuda::math::BinaryOperation::kMUL)
237 238 239 240
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

241 242
void ElementwiseMulActivationComputeNHWC::Run() {
  ELEMENTWISE_COMPUTE_ACT_NHWC(lite::cuda::math::BinaryOperation::kMUL)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(INFO) << cudaGetErrorString(error);
}

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(elementwise_add,
                     kCUDA,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::cuda::ElementwiseAddCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .Finalize();

W
Wilber 已提交
263 264 265 266 267 268 269 270 271 272 273
REGISTER_LITE_KERNEL(elementwise_sub,
                     kCUDA,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::cuda::ElementwiseSubCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .Finalize();

274 275 276 277 278 279 280 281 282 283 284 285 286 287
REGISTER_LITE_KERNEL(elementwise_add,
                     kCUDA,
                     kFloat,
                     kNHWC,
                     paddle::lite::kernels::cuda::ElementwiseAddComputeNHWC,
                     nhwc_format)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
W
Wilber 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_sub,
                     kCUDA,
                     kFloat,
                     kNHWC,
                     paddle::lite::kernels::cuda::ElementwiseSubComputeNHWC,
                     nhwc_format)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_mul,
                     kCUDA,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::cuda::ElementwiseMulCompute,
                     def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .Finalize();

REGISTER_LITE_KERNEL(elementwise_mul,
                     kCUDA,
                     kFloat,
                     kNHWC,
                     paddle::lite::kernels::cuda::ElementwiseMulComputeNHWC,
                     nhwc_format)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

345 346 347 348 349 350 351
REGISTER_LITE_KERNEL(
    fusion_elementwise_add_activation,
    kCUDA,
    kFloat,
    kNCHW,
    paddle::lite::kernels::cuda::ElementwiseAddActivationCompute,
    def)
352 353 354 355 356
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .Finalize();

357 358 359 360 361 362 363
REGISTER_LITE_KERNEL(
    fusion_elementwise_add_activation,
    kCUDA,
    kFloat,
    kNHWC,
    paddle::lite::kernels::cuda::ElementwiseAddActivationComputeNHWC,
    nhwc_format)
364 365 366 367 368 369 370 371 372 373 374 375 376 377
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

378 379 380 381 382 383 384
REGISTER_LITE_KERNEL(
    fusion_elementwise_sub_activation,
    kCUDA,
    kFloat,
    kNCHW,
    paddle::lite::kernels::cuda::ElementwiseSubActivationCompute,
    def)
385 386 387 388 389
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .Finalize();

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
REGISTER_LITE_KERNEL(
    fusion_elementwise_sub_activation,
    kCUDA,
    kFloat,
    kNHWC,
    paddle::lite::kernels::cuda::ElementwiseSubActivationComputeNHWC,
    nhwc_format)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_mul_activation,
    kCUDA,
    kFloat,
    kNCHW,
    paddle::lite::kernels::cuda::ElementwiseMulActivationCompute,
    def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindInput("Y", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kCUDA))})
    .Finalize();

REGISTER_LITE_KERNEL(
    fusion_elementwise_mul_activation,
    kCUDA,
    kFloat,
    kNHWC,
    paddle::lite::kernels::cuda::ElementwiseMulActivationComputeNHWC,
    nhwc_format)
430 431 432 433 434 435 436 437 438 439 440 441 442
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Y",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();