conv_op.cc 2.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/conv_op.h"
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool ConvOpLite::CheckShape() const {
  CHECK_OR_FALSE(param_.x);
  CHECK_OR_FALSE(param_.output);
  CHECK_OR_FALSE(param_.filter);
  // bias is optional.

  const auto in_dims = param_.x->dims();
  const auto filter_dims = param_.filter->dims();

  CHECK_OR_FALSE(in_dims.size() == 4 || in_dims.size() == 5);

  CHECK_EQ_OR_FALSE(in_dims.size(), filter_dims.size());
  CHECK_OR_FALSE(in_dims.size() - param_.strides.size() == 2U);
  CHECK_EQ_OR_FALSE(param_.paddings.size(), param_.strides.size());

Z
Zhaolong Xing 已提交
38 39
  // CHECK_EQ_OR_FALSE(in_dims[1], filter_dims[1] * param_.groups);
  // CHECK_EQ_OR_FALSE(filter_dims[0] % param_.groups, 0);
Y
Yan Chunwei 已提交
40 41 42 43 44 45 46 47 48
  CHECK_EQ_OR_FALSE(filter_dims.size(), 4UL);

  return true;
}

inline int ConvOutputSize(
    int input_size, int filter_size, int dilation, int padding, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
Z
Zhaolong Xing 已提交
49
  // CHECK_GT_OR_FALSE(output_size, 0);
Y
Yan Chunwei 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

  return output_size;
}

bool ConvOpLite::InferShape() const {
  const auto in_dims = param_.x->dims();
  const auto filter_dims = param_.filter->dims();

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < param_.strides.size(); ++i) {
    output_shape.push_back(ConvOutputSize(in_dims[i + 2],
                                          filter_dims[i + 2],
                                          param_.dilations[i],
                                          param_.paddings[i],
                                          param_.strides[i]));
  }

  // Set output dims
  param_.output->Resize(lite::DDim(output_shape));

  // share LoD
  // param_.output->set_lod(param_.x->lod());
  return true;
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(conv2d, paddle::lite::operators::ConvOpLite);
REGISTER_LITE_OP(depthwise_conv2d, paddle::lite::operators::ConvOpLite);