layout_compute.cc 8.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/cuda/layout_compute.h"
#include "lite/backends/cuda/math/transpose.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {

Z
Zhaolong Xing 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#define NCHWTONHWC(type)                                                  \
  auto& param = this->template Param<param_t>();                          \
  auto& ctx = this->ctx_->template As<CUDAContext>();                     \
  auto input = param.x->template data<type>();                            \
  auto input_dim = param.x->dims();                                       \
  CHECK(input_dim.size() == 4)                                            \
      << "NCHW to NHWC should guarantee that the input dims should be 4"; \
  int n = input_dim[0];                                                   \
  int c = input_dim[1];                                                   \
  int h = input_dim[2];                                                   \
  int w = input_dim[3];                                                   \
  param.y->Resize({n, h, w, c});                                          \
  auto output = param.y->template mutable_data<type>(TARGET(kCUDA));      \
  lite::cuda::math::NCHW2NHWC<type>(n, c, h * w, input, output, &ctx);

#define NHWCTONCHW(type)                                                  \
  auto& param = this->template Param<param_t>();                          \
  auto& ctx = this->ctx_->template As<CUDAContext>();                     \
  auto input = param.x->template data<type>();                            \
  auto input_dim = param.x->dims();                                       \
  CHECK(input_dim.size() == 4)                                            \
      << "NHWC to NCHW should guarantee that the input dims should be 4"; \
  int n = input_dim[0];                                                   \
  int h = input_dim[1];                                                   \
  int w = input_dim[2];                                                   \
  int c = input_dim[3];                                                   \
  param.y->Resize({n, c, h, w});                                          \
  auto output = param.y->template mutable_data<type>(TARGET(kCUDA));      \
  lite::cuda::math::NHWC2NCHW<type>(n, c, h * w, input, output, &ctx);

void NCHWToNHWCCompute::Run() { NCHWTONHWC(float) }

void NCHWToNHWCComputeInt8::Run() { NCHWTONHWC(int8_t) }

void NHWCToNCHWCompute::Run() { NHWCTONCHW(float) }

void NHWCToNCHWComputeInt8::Run() { NHWCTONCHW(int8_t) }
61 62 63 64 65 66 67 68 69 70

}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(layout,
                     kCUDA,
                     kFloat,
                     kNCHW,
Z
Zhaolong Xing 已提交
71
                     paddle::lite::kernels::cuda::NCHWToNHWCCompute,
72
                     nchw2nhwc)
Z
Zhaolong Xing 已提交
73
    .BindInput("Input",
74 75 76 77 78 79 80 81 82 83 84 85
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(layout,
                     kCUDA,
                     kFloat,
Z
Zhaolong Xing 已提交
86 87
                     kNCHW,
                     paddle::lite::kernels::cuda::NHWCToNCHWCompute,
88
                     nhwc2nchw)
Z
Zhaolong Xing 已提交
89
    .BindInput("Input",
90 91 92 93 94 95 96 97 98 99 100 101 102
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

REGISTER_LITE_KERNEL(layout,
                     kCUDA,
                     kInt8,
                     kNCHW,
Z
Zhaolong Xing 已提交
103 104 105
                     paddle::lite::kernels::cuda::NCHWToNHWCComputeInt8,
                     int8_nchw2nhwc)
    .BindInput("Input",
106 107 108 109 110 111 112 113 114 115 116 117
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(layout,
                     kCUDA,
                     kInt8,
Z
Zhaolong Xing 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
                     kNCHW,
                     paddle::lite::kernels::cuda::NHWCToNCHWComputeInt8,
                     int8_nhwc2nchw)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

REGISTER_LITE_KERNEL(layout_once,
                     kCUDA,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::cuda::NCHWToNHWCCompute,
                     nchw2nhwc)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(layout_once,
                     kCUDA,
                     kFloat,
                     kNCHW,
                     paddle::lite::kernels::cuda::NHWCToNCHWCompute,
152
                     nhwc2nchw)
Z
Zhaolong Xing 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

REGISTER_LITE_KERNEL(layout_once,
                     kCUDA,
                     kInt8,
                     kNCHW,
                     paddle::lite::kernels::cuda::NCHWToNHWCComputeInt8,
                     int8_nchw2nhwc)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(layout_once,
                     kCUDA,
                     kInt8,
                     kNCHW,
                     paddle::lite::kernels::cuda::NHWCToNCHWComputeInt8,
                     int8_nhwc2nchw)
    .BindInput("Input",
186 187 188 189 190 191 192 193
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kInt8),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kInt8),
                                       DATALAYOUT(kNCHW))})
    .Finalize();