dwconv_bn_relu_kernel.cpp 2.1 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_DWCONVBNRELU_OP

#include "operators/kernel/dwconv_bn_relu_kernel.h"
18
#include <cmath>
E
eclipsess 已提交
19 20 21 22 23 24
#include "operators/kernel/central-arm-func/dwconv_bn_relu_arm_func.h"

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
25
bool DWConvBNReluKernel<CPU, float>::Init(FusionDWConvBNReluParam<CPU> *param) {
E
eclipsess 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
  const Tensor *mean = param->InputMean();
  const Tensor *variance = param->InputVariance();
  const Tensor *scale = param->InputScale();
  const Tensor *bias = param->InputBias();
  const float epsilon = param->Epsilon();

  auto mean_ptr = mean->data<float>();
  auto variance_ptr = variance->data<float>();
  auto scale_ptr = scale->data<float>();
  auto bias_ptr = bias->data<float>();

  const int C = mean->numel();
  float inv_std_ptr[C];
  for (int i = 0; i < C; i++) {
    inv_std_ptr[i] =
        1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
  }
  Tensor *new_scale = new Tensor();
  Tensor *new_bias = new Tensor();
  auto new_scale_ptr = new_scale->mutable_data<float>({C});
  auto new_bias_ptr = new_bias->mutable_data<float>({C});
  for (int i = 0; i < C; i++) {
    new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
    new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
  return true;
}

template <>
void DWConvBNReluKernel<CPU, float>::Compute(
L
liuruilong 已提交
58
    const FusionDWConvBNReluParam<CPU> &param) {
E
eclipsess 已提交
59 60 61 62 63 64 65 66
  DWConvBNReluCompute<float>(param);
}
template class DWConvBNReluKernel<CPU, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif