im2sequence_kernel.cpp 2.9 KB
Newer Older
Y
yaokun01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "operators/kernel/im2sequence_kernel.h"

namespace paddle_mobile {
namespace operators {

bool IsExpand(const std::vector<int> &kernels,
              const std::vector<int> &strides,
              const std::vector<int> &paddings) {
  bool kernels_1 = true, strides_1 = true, padding_0 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
    kernels_1 = kernels_1 && (kernels[j] == 1);
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
  }
  return !(kernels_1 && strides_1 && padding_0);
}

inline int Im2SeqOutputSize(int input_size, int filter_size, int padding_0,
                            int padding_1, int stride) {
  const int output_size =
      (input_size + padding_0 + padding_1 - filter_size) / stride + 1;
  return output_size;
}

template <>
void Im2SequenceKernel<CPU, float>::Compute(const Im2SequenceParam &param) const {
Y
yaokun01 已提交
41 42 43
  const Tensor *in_x = param.Input();
  Tensor *out = param.Output();
  out->mutable_data<float>();
Y
yaokun01 已提交
44 45 46 47 48

  std::vector<int> kernels = param.Kernels();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();

Y
yaokun01 已提交
49 50 51 52 53
  auto in_x_dim = in_x->dims();
  const int batch_size = static_cast<int>(in_x_dim[0]);
  const int img_channels = static_cast<int>(in_x_dim[1]);
  const int img_height = static_cast<int>(in_x_dim[2]);
  const int img_width = static_cast<int>(in_x_dim[3]);
Y
yaokun01 已提交
54 55 56 57 58 59 60 61

  int output_height = Im2SeqOutputSize(img_height, kernels[0], paddings[0],
                                       paddings[2], strides[0]);
  int output_width = Im2SeqOutputSize(img_width, kernels[1], paddings[1],
                                      paddings[3], strides[1]);
  const std::vector<int> dilations({1, 1});

  //TODO: verify 
Y
yaokun01 已提交
62 63
  auto out_dims = out->dims();
  out->Resize({batch_size, out->numel() / batch_size});
Y
yaokun01 已提交
64 65 66

  for (int i = 0; i < batch_size; i++) {
    const Tensor src =
Y
yaokun01 已提交
67 68
          in_x->Slice(i, i + 1).Resize({img_channels, img_height, img_width});
    Tensor dst = out->Slice(i, i + 1).Resize(
Y
yaokun01 已提交
69 70 71 72 73
      {output_height, output_width, img_channels, kernels[0], kernels[1]});

    math::Im2ColFunctor<math::ColFormat::kOCF, CPU, float> f;
    f(src, dilations, strides, paddings, &dst);
  }
Y
yaokun01 已提交
74
  out->Resize(out_dims);
Y
yaokun01 已提交
75 76 77 78 79 80
}

template class Im2SequenceKernel<CPU, float>;

}  // namespace operators
}  // namespace paddle_mobile