cl_runtime.cc 13.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include "lite/backends/opencl/cl_runtime.h"
Y
Yan Chunwei 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#include <string>
#include <utility>
#include <vector>
#include "lite/utils/cp_logging.h"

namespace paddle {
namespace lite {

CLRuntime* CLRuntime::Global() {
  static CLRuntime cl_runtime_;
  cl_runtime_.Init();
  return &cl_runtime_;
}

CLRuntime::~CLRuntime() {
  if (command_queue_ != nullptr) {
29
    command_queue_->flush();
Y
Yan Chunwei 已提交
30 31
    command_queue_->finish();
  }
32
  // For controlling the destruction order
33 34 35 36
  command_queue_.reset();
  context_.reset();
  device_.reset();
  platform_.reset();
37
  device_info_.clear();
Y
Yan Chunwei 已提交
38 39 40 41 42 43 44 45 46 47
}

bool CLRuntime::Init() {
  if (initialized_) {
    return true;
  }
  bool is_platform_init = InitializePlatform();
  bool is_device_init = InitializeDevice();
  is_init_success_ = is_platform_init && is_device_init;
  initialized_ = true;
X
xiebaiyuan 已提交
48 49 50

  context_ = CreateContext();
  command_queue_ = CreateCommandQueue(context());
Y
Yan Chunwei 已提交
51 52 53 54 55 56 57 58 59 60
  return initialized_;
}

cl::Platform& CLRuntime::platform() {
  CHECK(platform_ != nullptr) << "platform_ is not initialized!";
  return *platform_;
}

cl::Context& CLRuntime::context() {
  if (context_ == nullptr) {
X
xiebaiyuan 已提交
61
    LOG(FATAL) << "context_ create failed. ";
Y
Yan Chunwei 已提交
62 63 64 65 66 67 68 69 70 71 72
  }
  return *context_;
}

cl::Device& CLRuntime::device() {
  CHECK(device_ != nullptr) << "device_ is not initialized!";
  return *device_;
}

cl::CommandQueue& CLRuntime::command_queue() {
  if (command_queue_ == nullptr) {
X
xiebaiyuan 已提交
73
    LOG(FATAL) << "command_queue_ create failed. ";
Y
Yan Chunwei 已提交
74 75 76 77
  }
  return *command_queue_;
}

78
std::unique_ptr<cl::Program> CLRuntime::CreateProgram(
Y
Yan Chunwei 已提交
79
    const cl::Context& context, std::string file_name) {
80 81
  auto cl_file = opencl_kernels_files.find(file_name);
  std::string content(cl_file->second.begin(), cl_file->second.end());
Y
Yan Chunwei 已提交
82 83 84
  cl::Program::Sources sources;
  sources.push_back(content);
  auto prog =
85
      std::unique_ptr<cl::Program>(new cl::Program(context, sources, &status_));
Y
Yan Chunwei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  VLOG(4) << "OpenCL kernel file name: " << file_name;
  VLOG(4) << "Program source size: " << content.size();
  CL_CHECK_FATAL(status_);
  return std::move(prog);
}

std::unique_ptr<cl::UserEvent> CLRuntime::CreateEvent(
    const cl::Context& context) {
  auto event =
      std::unique_ptr<cl::UserEvent>(new cl::UserEvent(context, &status_));
  CL_CHECK_FATAL(status_);
  return std::move(event);
}

bool CLRuntime::BuildProgram(cl::Program* program, const std::string& options) {
101
  /* -I +CLRuntime::Global()->cl_path() + "/cl_kernel"*/
X
xiebaiyuan 已提交
102
  std::string build_option = options + " -cl-fast-relaxed-math -cl-mad-enable";
103
  VLOG(4) << "OpenCL build_option: " << build_option;
Y
Yan Chunwei 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  status_ = program->build({*device_}, build_option.c_str());
  CL_CHECK_ERROR(status_);

  if (status_ != CL_SUCCESS) {
    if (program->getBuildInfo<CL_PROGRAM_BUILD_STATUS>(device()) ==
        CL_BUILD_ERROR) {
      std::string log = program->getBuildInfo<CL_PROGRAM_BUILD_LOG>(device());
      LOG(FATAL) << "Program build error: " << log;
    }
    return false;
  }

  return true;
}

bool CLRuntime::InitializePlatform() {
  std::vector<cl::Platform> all_platforms;
  status_ = cl::Platform::get(&all_platforms);
  CL_CHECK_ERROR(status_);
  if (all_platforms.empty()) {
    LOG(FATAL) << "No OpenCL platform found!";
    return false;
  }
  platform_ = std::make_shared<cl::Platform>();
  *platform_ = all_platforms[0];
  return true;
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
GpuType CLRuntime::ParseGpuTypeFromDeviceName(std::string device_name) {
  const std::string kMALI_PATTERN_STR = "Mali";
  const std::string kADRENO_PATTERN_STR = "QUALCOMM Adreno(TM)";
  const std::string kPOWERVR_PATTERN_STR = "PowerVR";

  if (device_name == kADRENO_PATTERN_STR) {
    LOG(INFO) << "adreno gpu";
    return GpuType::QUALCOMM_ADRENO;
  } else if (device_name.find(kMALI_PATTERN_STR) != std::string::npos) {
    LOG(INFO) << "mali gpu";
    return GpuType::ARM_MALI;
  } else if (device_name.find(kPOWERVR_PATTERN_STR) != std::string::npos) {
    LOG(INFO) << "powerVR gpu";
    return GpuType::IMAGINATION_POWERVR;
  } else {
    LOG(INFO) << "others gpu";
    return GpuType::UNKNOWN;
  }
}

Y
Yan Chunwei 已提交
152
bool CLRuntime::InitializeDevice() {
153 154 155 156 157 158
  // ===================== BASIC =====================
  // CL_DEVICE_TYPE_GPU
  // CL_DEVICE_NAME
  // CL_DEVICE_SUPPORT
  // CL_DEVICE_MAX_COMPUTE_UNITS
  // CL_DEVICE_MAX_CLOCK_FREQUENCY
Y
Yan Chunwei 已提交
159 160 161 162 163 164 165 166 167 168 169 170
  std::vector<cl::Device> all_devices;
  status_ = platform_->getDevices(CL_DEVICE_TYPE_GPU, &all_devices);
  CL_CHECK_ERROR(status_);
  if (all_devices.empty()) {
    LOG(FATAL) << "No OpenCL GPU device found!";
    return false;
  }
  device_ = std::make_shared<cl::Device>();
  *device_ = all_devices[0];

  auto device_name = device_->getInfo<CL_DEVICE_NAME>();
  LOG(INFO) << "Using device: " << device_name;
171
  gpu_type_ = ParseGpuTypeFromDeviceName(device_name);
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

  cl_device_type device_type = device_->getInfo<CL_DEVICE_TYPE>();
  auto device_type_to_str = [](cl_device_type t) -> std::string {
    std::string t_str{""};
    switch (t) {
      case CL_DEVICE_TYPE_CPU:
        t_str = "CPU";
        break;
      case CL_DEVICE_TYPE_GPU:
        t_str = "GPU";
        break;
      case CL_DEVICE_TYPE_ACCELERATOR:
        t_str = "Accelerator";
        break;
      case CL_DEVICE_TYPE_DEFAULT:
        t_str = "Default";
        break;
      default:
        t_str = "Unknown";
    }
    return t_str;
  };
194 195 196
  const std::string device_version = device_->getInfo<CL_DEVICE_VERSION>();
  LOG(INFO) << "device_version:" << device_version;

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  LOG(INFO) << "device_type:" << device_type_to_str(device_type);
  device_info_["CL_DEVICE_TYPE"] = device_type;

  auto max_units = device_->getInfo<CL_DEVICE_MAX_COMPUTE_UNITS>();
  LOG(INFO) << "The chosen device has " << max_units << " compute units.";
  device_info_["CL_DEVICE_MAX_COMPUTE_UNITS"] = max_units;

  auto max_clock_freq = device_->getInfo<CL_DEVICE_MAX_CLOCK_FREQUENCY>();
  LOG(INFO) << "CL_DEVICE_MAX_CLOCK_FREQUENCY:" << max_clock_freq;
  device_info_["CL_DEVICE_MAX_CLOCK_FREQUENCY"] = max_clock_freq;

  // ===================== MEMORY =====================
  // CL_DEVICE_LOCAL_MEM_SIZE
  // CL_DEVICE_GLOBAL_MEM_CACHE_SIZE
  // CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE
  // CL_DEVICE_GLOBAL_MEM_SIZE
  auto local_mem_kb =
      static_cast<float>(device_->getInfo<CL_DEVICE_LOCAL_MEM_SIZE>()) / 1024;
  LOG(INFO) << "The local memory size of the chosen device is " << local_mem_kb
            << " KB.";
  device_info_["CL_DEVICE_LOCAL_MEM_SIZE_KB"] = local_mem_kb;

  auto global_mem_cache_size_kb =
      static_cast<float>(device_->getInfo<CL_DEVICE_GLOBAL_MEM_CACHE_SIZE>()) /
      1024;
  LOG(INFO) << "CL_DEVICE_GLOBAL_MEM_CACHE_SIZE(KB):"
            << global_mem_cache_size_kb << " KB.";
  device_info_["CL_DEVICE_GLOBAL_MEM_CACHE_SIZE_KB"] = global_mem_cache_size_kb;

  auto global_mem_cacheline_size_kb =
      static_cast<float>(
          device_->getInfo<CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE>()) /
      1024;
  LOG(INFO) << "CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE(KB):"
            << global_mem_cacheline_size_kb << " KB.";
  device_info_["CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE_KB"] =
      global_mem_cacheline_size_kb;

  auto global_mem_size_kb =
      static_cast<float>(device_->getInfo<CL_DEVICE_GLOBAL_MEM_SIZE>()) / 1024;
  LOG(INFO) << "CL_DEVICE_GLOBAL_MEM_SIZE(KB):" << global_mem_size_kb << " KB.";
  device_info_["CL_DEVICE_GLOBAL_MEM_SIZE_KB"] = global_mem_size_kb;

  // ===================== WORK_GROUP =====================
  // CL_DEVICE_MAX_WORK_GROUP_SIZE
  // CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS
  // CL_DEVICE_MAX_WORK_ITEM_SIZES
  auto max_work_group_size = device_->getInfo<CL_DEVICE_MAX_WORK_GROUP_SIZE>();
  LOG(INFO) << "CL_DEVICE_MAX_WORK_GROUP_SIZE:" << max_work_group_size;
  device_info_["CL_DEVICE_MAX_WORK_GROUP_SIZE"] = max_work_group_size;

  auto max_dims_num = device_->getInfo<CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS>();
  LOG(INFO) << "CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS:" << max_dims_num;
  device_info_["CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS"] = max_dims_num;

  auto max_work_item_sizes = device_->getInfo<CL_DEVICE_MAX_WORK_ITEM_SIZES>();
  for (size_t i = 0; i < max_work_item_sizes.size(); ++i) {
    LOG(INFO) << "max_work_item_sizes[" << i << "]:" << max_work_item_sizes[i];
    std::string dim_key = "CL_DEVICE_MAX_WORK_ITEM_SIZES_" + std::to_string(i);
    device_info_[dim_key] = max_work_item_sizes[i];
  }

  // ===================== BUFFER =====================
  // CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE
  auto max_constant_buffer_size_kb =
      static_cast<float>(
          device_->getInfo<CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE>()) /
      1024;
  LOG(INFO) << "CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE:"
            << max_constant_buffer_size_kb;
  device_info_["CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE"] =
      max_constant_buffer_size_kb;

  // ===================== IMAGE =====================
  // CL_DEVICE_IMAGE_SUPPORT
  // CL_DEVICE_IMAGE2D_MAX_HEIGHT
  // CL_DEVICE_IMAGE2D_MAX_WIDTH
Y
Yan Chunwei 已提交
274 275 276
  auto image_support = device_->getInfo<CL_DEVICE_IMAGE_SUPPORT>();
  if (image_support) {
    LOG(INFO) << "The chosen device supports image processing.";
277
    device_info_["CL_DEVICE_IMAGE_SUPPORT"] = 1;
Y
Yan Chunwei 已提交
278 279
  } else {
    LOG(INFO) << "The chosen device doesn't support image processing!";
280
    device_info_["CL_DEVICE_IMAGE_SUPPORT"] = 0;
Y
Yan Chunwei 已提交
281 282
    return false;
  }
283 284 285 286 287 288 289 290 291 292 293 294

  auto image2d_max_height = device_->getInfo<CL_DEVICE_IMAGE2D_MAX_HEIGHT>();
  LOG(INFO) << "CL_DEVICE_IMAGE2D_MAX_HEIGHT:" << image2d_max_height;
  device_info_["CL_DEVICE_IMAGE2D_MAX_HEIGHT"] = image2d_max_height;

  auto image2d_max_width = device_->getInfo<CL_DEVICE_IMAGE2D_MAX_WIDTH>();
  LOG(INFO) << "CL_DEVICE_IMAGE2D_MAX_WIDTH:" << image2d_max_width;
  device_info_["CL_DEVICE_IMAGE2D_MAX_WIDTH"] = image2d_max_width;

  // ===================== OTHERS / EXTENSION / VERSION =====================
  // CL_DEVICE_EXTENSIONS
  // CL_DEVICE_ADDRESS_BITS
Y
Yan Chunwei 已提交
295 296 297 298
  auto ext_data = device_->getInfo<CL_DEVICE_EXTENSIONS>();
  VLOG(4) << "The extensions supported by this device: " << ext_data;
  if (ext_data.find("cl_khr_fp16") != std::string::npos) {
    LOG(INFO) << "The chosen device supports the half data type.";
299
    device_info_["CL_DEVICE_EXTENSIONS_FP16"] = 1;
Y
Yan Chunwei 已提交
300 301
  } else {
    LOG(INFO) << "The chosen device doesn't support the half data type!";
302
    device_info_["CL_DEVICE_EXTENSIONS_FP16"] = 0;
Y
Yan Chunwei 已提交
303
  }
304 305 306 307 308 309 310 311

  auto address_bits = device_->getInfo<CL_DEVICE_ADDRESS_BITS>();
  LOG(INFO) << "CL_DEVICE_ADDRESS_BITS:" << address_bits;
  device_info_["CL_DEVICE_ADDRESS_BITS"] = address_bits;

  auto driver_version = device_->getInfo<CL_DRIVER_VERSION>();
  LOG(INFO) << "CL_DRIVER_VERSION:" << driver_version;

Y
Yan Chunwei 已提交
312 313 314
  return true;
}

315 316 317 318 319 320 321 322
std::map<std::string, size_t>& CLRuntime::GetDeviceInfo() {
  if (0 != device_info_.size()) {
    return device_info_;
  }
  InitializeDevice();
  return device_info_;
}

323 324
GpuType& CLRuntime::GetGpuType() { return gpu_type_; }

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
void CLRuntime::GetAdrenoContextProperties(
    std::vector<cl_context_properties>* properties,
    GPUPerfMode gpu_perf_mode,
    GPUPriorityLevel gpu_priority_level) {
  CHECK(properties) << "cl_context_properties is nullptr";
  properties->reserve(5);
  switch (gpu_perf_mode) {
    case GPUPerfMode::PERF_LOW:
      LOG(INFO) << "GPUPerfMode::PERF_LOW";
      properties->push_back(CL_CONTEXT_PERF_MODE_QCOM);
      properties->push_back(CL_PERF_MODE_LOW_QCOM);
      break;
    case GPUPerfMode::PERF_NORMAL:
      LOG(INFO) << "GPUPerfMode::PERF_NORMAL";
      properties->push_back(CL_CONTEXT_PERF_MODE_QCOM);
      properties->push_back(CL_PERF_MODE_NORMAL_QCOM);
      break;
    case GPUPerfMode::PERF_HIGH:
      LOG(INFO) << "GPUPerfMode::PERF_HIGH";
      properties->push_back(CL_CONTEXT_PERF_MODE_QCOM);
      properties->push_back(CL_PERF_MODE_HIGH_QCOM);
      break;
    default:
      break;
  }
  switch (gpu_priority_level) {
    case GPUPriorityLevel::PRIORITY_LOW:
      LOG(INFO) << "GPUPriorityLevel::PRIORITY_LOW";
      properties->push_back(CL_CONTEXT_PRIORITY_LEVEL_QCOM);
      properties->push_back(CL_PRIORITY_HINT_LOW_QCOM);
      break;
    case GPUPriorityLevel::PRIORITY_NORMAL:
      LOG(INFO) << "GPUPriorityLevel::PRIORITY_NORMAL";
      properties->push_back(CL_CONTEXT_PRIORITY_LEVEL_QCOM);
      properties->push_back(CL_PRIORITY_HINT_NORMAL_QCOM);
      break;
    case GPUPriorityLevel::PRIORITY_HIGH:
      LOG(INFO) << "GPUPriorityLevel::PRIORITY_HIGH";
      properties->push_back(CL_CONTEXT_PRIORITY_LEVEL_QCOM);
      properties->push_back(CL_PRIORITY_HINT_HIGH_QCOM);
      break;
    default:
      break;
  }
  // The properties list should be terminated with 0
  properties->push_back(0);
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
double CLRuntime::GetCommandTime(const cl::Event& event) {
  command_queue().finish();
  auto start_nanos = event.getProfilingInfo<CL_PROFILING_COMMAND_START>();
  auto stop_nanos = event.getProfilingInfo<CL_PROFILING_COMMAND_END>();
  return (stop_nanos - start_nanos) / 1000000.0;
}

double CLRuntime::GetQueuedTime(const cl::Event& event) {
  command_queue().finish();
  return (event.getProfilingInfo<CL_PROFILING_COMMAND_START>() -
          event.getProfilingInfo<CL_PROFILING_COMMAND_QUEUED>()) /
         1000000.0;
}

double CLRuntime::GetSubmitTime(const cl::Event& event) {
  command_queue().finish();
  return (event.getProfilingInfo<CL_PROFILING_COMMAND_START>() -
          event.getProfilingInfo<CL_PROFILING_COMMAND_SUBMIT>()) /
         1000000.0;
}

Y
Yan Chunwei 已提交
394 395
}  // namespace lite
}  // namespace paddle