paddle_api_test.cc 5.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_api.h"
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/utils/cp_logging.h"
19
#include "lite/utils/io.h"
S
Shibo Tao 已提交
20

Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
DEFINE_string(model_dir, "", "");

namespace paddle {
namespace lite_api {

TEST(CxxApi, run) {
  lite_api::CxxConfig config;
  config.set_model_dir(FLAGS_model_dir);
  config.set_valid_places({
      Place{TARGET(kX86), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
  });

  auto predictor = lite_api::CreatePaddlePredictor(config);

36 37
  LOG(INFO) << "Version: " << predictor->GetVersion();

S
sangoly 已提交
38
  auto inputs = predictor->GetInputNames();
39
  LOG(INFO) << "input size: " << inputs.size();
40
  for (size_t i = 0; i < inputs.size(); i++) {
41 42
    LOG(INFO) << "inputnames: " << inputs[i];
  }
S
sangoly 已提交
43
  auto outputs = predictor->GetOutputNames();
44
  for (size_t i = 0; i < outputs.size(); i++) {
45 46 47
    LOG(INFO) << "outputnames: " << outputs[i];
  }
  auto input_tensor = predictor->GetInputByName(inputs[0]);
Y
Yan Chunwei 已提交
48 49 50 51 52 53 54 55
  input_tensor->Resize(std::vector<int64_t>({100, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  predictor->Run();

56
  auto output = predictor->GetTensor(outputs[0]);
Y
Yan Chunwei 已提交
57 58 59 60 61 62 63 64
  auto* out = output->data<float>();
  LOG(INFO) << out[0];
  LOG(INFO) << out[1];

  EXPECT_NEAR(out[0], 50.2132, 1e-3);
  EXPECT_NEAR(out[1], -28.8729, 1e-3);

  predictor->SaveOptimizedModel(FLAGS_model_dir + ".opt2");
65 66
  predictor->SaveOptimizedModel(
      FLAGS_model_dir + ".opt2.naive", LiteModelType::kNaiveBuffer, true);
Y
Yan Chunwei 已提交
67 68
}

W
Wilber 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
TEST(CxxApi, share_external_data) {
  lite_api::CxxConfig config;
  config.set_model_dir(FLAGS_model_dir);
  config.set_valid_places({
      Place{TARGET(kX86), PRECISION(kFloat)},
      Place{TARGET(kARM), PRECISION(kFloat)},
  });

  auto predictor = lite_api::CreatePaddlePredictor(config);

  auto inputs = predictor->GetInputNames();
  auto outputs = predictor->GetOutputNames();

  std::vector<float> external_data(100 * 100);
  for (int i = 0; i < 100 * 100; i++) {
    external_data[i] = i;
  }

  auto input_tensor = predictor->GetInputByName(inputs[0]);
  input_tensor->Resize(std::vector<int64_t>({100, 100}));
  size_t memory_size = 100 * 100 * sizeof(float);
  input_tensor->ShareExternalMemory(static_cast<void*>(external_data.data()),
                                    memory_size,
                                    config.valid_places()[0].target);

  predictor->Run();

  auto output = predictor->GetTensor(outputs[0]);
  auto* out = output->data<float>();
  LOG(INFO) << out[0];
  LOG(INFO) << out[1];

  EXPECT_NEAR(out[0], 50.2132, 1e-3);
  EXPECT_NEAR(out[1], -28.8729, 1e-3);
}

105
// Demo1 for Mobile Devices :Load model from file and run
Y
Yan Chunwei 已提交
106 107 108
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
TEST(LightApi, run) {
  lite_api::MobileConfig config;
109
  config.set_model_from_file(FLAGS_model_dir + ".opt2.naive.nb");
Y
Yan Chunwei 已提交
110 111 112

  auto predictor = lite_api::CreatePaddlePredictor(config);

S
sangoly 已提交
113
  auto inputs = predictor->GetInputNames();
114 115
  LOG(INFO) << "input size: " << inputs.size();
  for (int i = 0; i < inputs.size(); i++) {
116
    LOG(INFO) << "inputnames: " << inputs.at(i);
117
  }
S
sangoly 已提交
118
  auto outputs = predictor->GetOutputNames();
119
  for (int i = 0; i < outputs.size(); i++) {
120
    LOG(INFO) << "outputnames: " << outputs.at(i);
121 122
  }

123 124
  LOG(INFO) << "Version: " << predictor->GetVersion();

Y
Yan Chunwei 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  auto input_tensor = predictor->GetInput(0);
  input_tensor->Resize(std::vector<int64_t>({100, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  predictor->Run();

  auto output = predictor->GetOutput(0);
  auto* out = output->data<float>();
  LOG(INFO) << out[0];
  LOG(INFO) << out[1];

  EXPECT_NEAR(out[0], 50.2132, 1e-3);
  EXPECT_NEAR(out[1], -28.8729, 1e-3);
}
142 143 144 145

// Demo2 for Loading model from memory
TEST(MobileConfig, LoadfromMemory) {
  // Get naive buffer
146 147
  auto model_file = std::string(FLAGS_model_dir) + ".opt2.naive.nb";
  std::string model_buffer = lite::ReadFile(model_file);
148 149
  // set model buffer and run model
  lite_api::MobileConfig config;
150
  config.set_model_from_buffer(model_buffer);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

  auto predictor = lite_api::CreatePaddlePredictor(config);
  auto input_tensor = predictor->GetInput(0);
  input_tensor->Resize(std::vector<int64_t>({100, 100}));
  auto* data = input_tensor->mutable_data<float>();
  for (int i = 0; i < 100 * 100; i++) {
    data[i] = i;
  }

  predictor->Run();

  const auto output = predictor->GetOutput(0);
  const float* raw_output = output->data<float>();

  for (int i = 0; i < 10; i++) {
    LOG(INFO) << "out " << raw_output[i];
  }
}

Y
Yan Chunwei 已提交
170 171 172 173
#endif

}  // namespace lite_api
}  // namespace paddle