test_quantize_op.cpp 5.8 KB
Newer Older
H
hjchen2 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

H
hjchen2 已提交
15
#include <iostream>
H
hjchen2 已提交
16 17 18 19 20
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/quantize_op.h"

namespace paddle_mobile {
H
hjchen2 已提交
21 22 23 24 25 26 27
namespace round {
enum RoundType {
  RoundToEven = 0,
  RoundAwayZero = 1,
  RoundTowardsZero = 2,
};
}
H
hjchen2 已提交
28

H
hjchen2 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
template <round::RoundType T>
static int8_t Round(float x);

template <>
static int8_t Round<round::RoundAwayZero>(float x) {
  return std::round(x);
}

template <>
static int8_t Round<round::RoundTowardsZero>(float x) {
  return int8_t(x);
}

template <>
static int8_t Round<round::RoundToEven>(float x) {
  int8_t ret = 0;
  float v = std::round(x);
  int32_t q = (int32_t)v;
  if (abs(abs(q - x) - 0.5) > 0) {
    ret = q;
  } else {
    if (abs(q) % 2 == 0) {
      ret = q;
    } else {
      ret = q + ((q > 0) ? -1 : 1);
H
hjchen2 已提交
54 55
    }
  }
H
hjchen2 已提交
56
  return ret;
H
hjchen2 已提交
57 58
}

H
hjchen2 已提交
59 60 61 62 63 64 65 66 67 68 69
template <round::RoundType T>
static void quantize(const Tensor *input, const float scale, const int pad,
                     const int8_t pad_val, Tensor *output) {
  int batch_size = input->dims()[0];
  int channels = input->dims()[1];
  int input_h = input->dims()[2];
  int input_w = input->dims()[3];
  int output_h = output->dims()[2];
  int output_w = output->dims()[3];
  size_t input_spatial = input_h * input_w;
  size_t output_spatial = output_h * output_w;
H
hjchen2 已提交
70 71
  const float *x = input->data<const float>();
  int8_t *y = output->mutable_data<int8_t>();
H
hjchen2 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

  std::cout << "pad: " << pad << ", pad_val: " << int(pad_val) << std::endl;
  for (int nc = 0; nc < batch_size * channels; ++nc) {
    const float *xh = x + nc * input_spatial;
    int8_t *yh = y + nc * output_spatial;
    // pad top
    for (int h = 0; h < pad; ++h, yh += output_w) {
      for (int w = 0; w < output_w; ++w) {
        yh[w] = pad_val;
      }
    }
    for (int h = 0; h < input_h; ++h, yh += output_w, xh += input_w) {
      // pad left
      for (int w = 0; w < pad; ++w) {
        yh[w] = pad_val;
      }
      for (int w = 0; w < input_w; ++w) {
        yh[w + pad] = Round<T>(xh[w] * scale);
      }
      // pad right
      for (int w = 0; w < pad; ++w) {
        yh[pad + input_w + w] = pad_val;
      }
    }
    // pad bottom
    for (int h = 0; h < pad; ++h, yh += output_w) {
      for (int w = 0; w < output_w; ++w) {
        yh[w] = pad_val;
H
hjchen2 已提交
100 101 102 103 104
      }
    }
  }
}

H
hjchen2 已提交
105 106
static float find_abs_max(const Tensor *input) {
  float max_abs = 0.f;
107 108 109
  const float *x = input->data<const float>();
  size_t size = input->numel();
  for (size_t i = 0; i < size; ++i) {
H
hjchen2 已提交
110 111 112 113
    float value = std::abs(x[i]);
    if (value > max_abs) {
      max_abs = value;
    }
114
  }
H
hjchen2 已提交
115
  return max_abs;
116 117
}

H
hjchen2 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
int TestQuqntizeOp(int argc, char *argv[]) {
  if (argc < 5) {
    std::cout
        << "Usage: ./test-quantize-op batch_size channel height width [pad]"
        << std::endl;
    return 1;
  }
  int pad = 0;
  int batch_size = atoi(argv[1]);
  int channel = atoi(argv[2]);
  int height = atoi(argv[3]);
  int width = atoi(argv[4]);
  if (argc == 6) {
    pad = atoi(argv[5]);
  }
  std::cout << "batch_size: " << batch_size << ", channel: " << channel
            << ", height: " << height << ", width: " << width << std::endl;
  framework::DDim dim =
      framework::make_ddim({batch_size, channel, height, width});
H
hjchen2 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

  VariableNameMap inputs;
  VariableNameMap outputs;
  auto scope = std::make_shared<framework::Scope>();
  inputs["X"] = std::vector<std::string>({"input"});
  outputs["Out"] = std::vector<std::string>({"output"});
  outputs["OutScale"] = std::vector<std::string>({"output_scale"});

  auto input_var = scope.get()->Var("input");
  auto input = input_var->template GetMutable<framework::LoDTensor>();
  SetupTensor<float>(input, dim, -100.f, 100.f);

  auto output_var = scope.get()->Var("output");
  auto output_scale_var = scope.get()->Var("output_scale");

  framework::AttributeMap attrs;
H
hjchen2 已提交
153
  attrs["paddings"].Set<vector<int>>(std::vector<int>({pad, pad}));
H
hjchen2 已提交
154 155 156 157 158 159 160 161 162 163
  auto *op = new operators::QuantizeOp<CPU, float>("quantize", inputs, outputs,
                                                   attrs, scope);
  op->InferShape();
  op->Run();

  auto output = output_var->template Get<framework::LoDTensor>();
  const int8_t *output_data = output->data<int8_t>();
  auto output_scale = output_scale_var->template Get<framework::LoDTensor>();
  const float *output_scale_data = output_scale->data<float>();

164
  float output_scale_cmp = find_abs_max(input);
H
hjchen2 已提交
165 166 167 168 169
  PADDLE_MOBILE_ENFORCE(output_scale_cmp == output_scale_data[0],
                        "output_scale = %.6f, output_scale_cmp = %.6f",
                        output_scale_cmp, output_scale_data[0]);

  framework::Tensor output_cmp;
H
hjchen2 已提交
170
  output_cmp.Resize(output->dims());
171
  float scale = 127 / output_scale_cmp;
H
hjchen2 已提交
172 173 174
  // quantize<round::RoundToEven>(input, scale, pad, 0, &output_cmp);
  // quantize<round::RoundAwayZero>(input, scale, pad, 0, &output_cmp);
  quantize<round::RoundTowardsZero>(input, scale, pad, 0, &output_cmp);
H
hjchen2 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
  int8_t *output_cmp_data = output_cmp.data<int8_t>();
  for (int i = 0; i < output->numel(); ++i) {
    PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
                          "output[%d] = %d, output_cmp[%d] = %d", i,
                          static_cast<int>(output_data[i]), i,
                          static_cast<int>(output_cmp_data[i]));
  }
  delete op;
  return 0;
}

}  // namespace paddle_mobile

H
hjchen2 已提交
188 189 190
int main(int argc, char *argv[]) {
  return paddle_mobile::TestQuqntizeOp(argc, argv);
}