conv_compute_test.cc 22.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "lite/core/context.h"
18
#include "lite/core/profile/timer.h"
19 20 21 22 23 24 25 26
#include "lite/operators/op_params.h"
#include "lite/tests/utils/naive_math_impl.h"
#include "lite/tests/utils/tensor_utils.h"

#ifdef LITE_WITH_ARM
#include "lite/kernels/arm/conv_compute.h"
#endif  // LITE_WITH_ARM

27 28 29 30 31 32 33
DEFINE_int32(power_mode,
             3,
             "power mode: "
             "0 for POWER_HIGH;"
             "1 for POWER_LOW;"
             "2 for POWER_FULL;"
             "3 for NO_BIND");
34 35 36
DEFINE_int32(threads, 1, "threads num");
DEFINE_int32(warmup, 0, "warmup times");
DEFINE_int32(repeats, 1, "repeats times");
37
DEFINE_bool(basic_test, true, "do all tests");
38 39 40 41 42 43 44 45 46 47 48
DEFINE_bool(check_result, true, "check the result");

DEFINE_int32(batch, 1, "batch size");
DEFINE_int32(in_channel, 32, "input channel");
DEFINE_int32(in_height, 112, "input height");
DEFINE_int32(in_width, 112, "input width");

DEFINE_int32(out_channel, 32, "output channel");
DEFINE_int32(group, 1, "group");
DEFINE_int32(kernel_h, 3, "kernel height");
DEFINE_int32(kernel_w, 3, "kernel width");
49 50 51 52
DEFINE_int32(pad_h0, 1, "pad top");
DEFINE_int32(pad_h1, 1, "pad bottom");
DEFINE_int32(pad_w0, 1, "pad left");
DEFINE_int32(pad_w1, 1, "pad right");
53 54 55 56 57
DEFINE_int32(stride_h, 1, "stride height");
DEFINE_int32(stride_w, 1, "stride width");
DEFINE_int32(dila_h, 1, "dilation height");
DEFINE_int32(dila_w, 1, "dilation width");

58 59 60 61
DEFINE_int32(flag_act,
             0,
             "do activation");  // 0-no act, 1-relu, 2-relu6, 4-leakyrelu
DEFINE_double(leakey_relu_alpha, 1.0, "leakey relu alpha");
62 63 64 65 66
DEFINE_bool(flag_bias, true, "with bias");

typedef paddle::lite::DDim DDim;
typedef paddle::lite::Tensor Tensor;
typedef paddle::lite::operators::ConvParam ConvParam;
67 68
typedef paddle::lite::operators::ActivationParam ActivationParam;

69
using paddle::lite::profile::Timer;
70 71 72 73

DDim compute_out_dim(const DDim& dim_in,
                     const paddle::lite::operators::ConvParam& param) {
  DDim dim_out = dim_in;
H
HappyAngel 已提交
74 75
  auto paddings = *param.paddings;
  auto dilations = *param.dilations;
76 77 78 79 80
  dim_out[1] = param.filter->dims()[0];
  auto kernel_h = param.filter->dims()[2];
  auto kernel_w = param.filter->dims()[3];
  auto h = dim_in[2];
  auto w = dim_in[3];
H
HappyAngel 已提交
81 82 83 84 85 86
  int dila_h = dilations[0];
  int dila_w = dilations[1];
  int pad_top = paddings[0];
  int pad_bottom = paddings[1];
  int pad_left = paddings[2];
  int pad_right = paddings[3];
87 88 89
  int stride_h = param.strides[0];
  int stride_w = param.strides[1];
  auto kernel_exten = dila_h * (kernel_h - 1) + 1;
H
HappyAngel 已提交
90
  auto hout = (h + pad_top + pad_bottom - kernel_exten) / stride_h + 1;
91
  kernel_exten = dila_w * (kernel_w - 1) + 1;
H
HappyAngel 已提交
92
  auto wout = (w + pad_left + pad_right - kernel_exten) / stride_w + 1;
93 94 95 96 97 98 99 100 101 102 103 104 105
  dim_out[2] = hout;
  dim_out[3] = wout;
  return dim_out;
}

#ifdef LITE_WITH_ARM
void test_conv_fp32(const std::vector<DDim>& input_dims,
                    const DDim& weight_dim,
                    int group,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dilas,
                    bool flag_bias,
106
                    int flag_act,
107
                    const std::vector<int>& thread_num,
108 109
                    const std::vector<int>& power_mode,
                    const float leakey_relu_scale) {
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
#ifdef LITE_WITH_ARM
  paddle::lite::DeviceInfo::Init();
#endif
  ConvParam param;
  param.x = new Tensor;
  param.x->set_precision(PRECISION(kFloat));
  param.filter = new Tensor;
  param.filter->Resize(weight_dim);
  param.filter->set_precision(PRECISION(kFloat));
  if (flag_bias) {
    param.bias = new Tensor;
    param.bias->Resize({weight_dim[0]});
    param.bias->set_precision(PRECISION(kFloat));
  }
  param.strides = strides;
H
HappyAngel 已提交
125 126
  param.paddings = std::make_shared<std::vector<int>>(pads);
  param.dilations = std::make_shared<std::vector<int>>(dilas);
127
  param.groups = group;
128 129
  const float six = 6.f;
  if (flag_act > 0) {
130 131
    ActivationParam act_param;
    act_param.has_active = true;
132 133 134 135 136 137 138 139 140
    act_param.active_type = (paddle::lite_api::ActivationType)
        flag_act;  // 1-relu, 2-relu6, 4-leakyrelu
    if (flag_act == 1) {
      param.fuse_relu = true;
    } else if (flag_act == 2) {
      act_param.Relu_clipped_coef = six;
    } else if (flag_act == 4) {
      act_param.Leaky_relu_alpha = leakey_relu_scale;
    }
141 142
    param.activation_param = act_param;
  }
143 144 145 146 147 148 149 150 151 152 153 154 155

  param.output = new Tensor;
  param.output->set_precision(PRECISION(kFloat));

  paddle::lite::fill_tensor_rand(*param.filter, -1.f, 1.f);
  //  paddle::lite::fill_tensor_const(*param.filter, 1.f);
  if (flag_bias) {
    paddle::lite::fill_tensor_rand(*param.bias, -1.f, 1.f);
    //    paddle::lite::fill_tensor_const(*param.bias, 1.f);
  }
  auto wptr = param.filter->data<float>();
  auto bias_ptr = flag_bias ? param.bias->data<float>() : nullptr;

156
  for (auto& cls : power_mode) {
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    for (auto& th : thread_num) {
      paddle::lite::kernels::arm::ConvCompute<PRECISION(kFloat),
                                              PRECISION(kFloat)>
          conv;
      std::unique_ptr<paddle::lite::KernelContext> ctx1(
          new paddle::lite::KernelContext);
      auto& ctx = ctx1->As<paddle::lite::ARMContext>();
      ctx.SetRunMode(static_cast<paddle::lite_api::PowerMode>(cls), th);
      /// set param and context
      for (auto& dim_in : input_dims) {
        param.x->Resize(dim_in);
        DDim out_tmp_dims = compute_out_dim(dim_in, param);
        if (out_tmp_dims[2] < 1 || out_tmp_dims[3] < 1) {
          continue;
        }
        param.output->Resize(out_tmp_dims);
        break;
      }
      conv.SetParam(param);
      conv.SetContext(std::move(ctx1));
      /// prepare for run
      conv.PrepareForRun();

      for (auto& dim_in : input_dims) {
        CHECK_EQ(weight_dim[1] * group, dim_in[1])
            << "input channel must equal to weights channel";
        DDim dim_out = compute_out_dim(dim_in, param);
        if (dim_out[2] < 1 || dim_out[3] < 1) {
          continue;
        }
        param.x->Resize(dim_in);
        param.output->Resize(dim_out);

        paddle::lite::fill_tensor_rand(*param.x, -1.f, 1.f);
H
HappyAngel 已提交
191
        // paddle::lite::fill_tensor_const(*param.x, 1.f);
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        auto din = param.x->data<float>();

        Tensor tout_basic;
        if (FLAGS_check_result) {
          tout_basic.set_precision(PRECISION(kFloat));
          tout_basic.Resize(dim_out);
          fill_tensor_const(tout_basic, 0.f);
          auto dout_basic = tout_basic.mutable_data<float>();
          conv_basic<float, float>(din,
                                   dout_basic,
                                   dim_in[0],
                                   dim_out[1],
                                   dim_out[2],
                                   dim_out[3],
                                   dim_in[1],
                                   dim_in[2],
                                   dim_in[3],
                                   wptr,
                                   bias_ptr,
                                   group,
                                   weight_dim[3],
                                   weight_dim[2],
                                   strides[1],
                                   strides[0],
                                   dilas[1],
                                   dilas[0],
H
HappyAngel 已提交
218
                                   pads[2],
219 220
                                   pads[0],
                                   flag_bias,
221 222 223
                                   flag_act,
                                   six,
                                   leakey_relu_scale);
224 225 226 227 228 229
        }
        /// warm up
        for (int i = 0; i < FLAGS_warmup; ++i) {
          conv.Launch();
        }
        /// compute
230
        Timer t0;
231
        for (int i = 0; i < FLAGS_repeats; ++i) {
232
          t0.Start();
233
          conv.Launch();
234
          t0.Stop();
235 236 237 238 239
        }

        double gops = 2.0 * dim_out.production() * dim_in[1] * weight_dim[2] *
                      weight_dim[3] / param.groups;
        LOG(INFO) << "conv fp32: input shape: " << dim_in << ", output shape"
240 241
                  << dim_out << ",running time, avg: " << t0.LapTimes().Avg()
                  << ", min time: " << t0.LapTimes().Min()
242
                  << ", total GOPS: " << 1e-9 * gops
243 244
                  << " GOPS, avg GOPs: " << 1e-6 * gops / t0.LapTimes().Avg()
                  << " GOPs, max GOPs: " << 1e-6 * gops / t0.LapTimes().Min();
245 246 247 248 249 250 251 252 253 254 255

        if (FLAGS_check_result) {
          double max_ratio = 0;
          double max_diff = 0;
          tensor_cmp_host(tout_basic, *param.output, max_ratio, max_diff);
          LOG(INFO) << "compare result, max diff: " << max_diff
                    << ", max ratio: " << max_ratio;
          if (std::abs(max_ratio) > 1e-3f) {
            if (max_diff > 5e-4f) {
              LOG(WARNING) << "basic result";
              print_tensor(tout_basic);
X
Xiaoyang LI 已提交
256
              LOG(WARNING) << "lite result";
257 258 259 260 261 262 263 264 265
              print_tensor(*param.output);
              Tensor tdiff;
              tdiff.Resize(tout_basic.dims());
              tdiff.set_precision(PRECISION(kFloat));
              tensor_diff(tout_basic, *param.output, tdiff);
              print_tensor(tdiff);
              LOG(FATAL) << "test fp32 conv: input: " << dim_in
                         << ", output: " << dim_out
                         << ", weight dim: " << weight_dim
H
HappyAngel 已提交
266 267
                         << ", pad: " << pads[0] << ", " << pads[1] << ", "
                         << pads[2] << ", " << pads[3]
268 269
                         << ", stride: " << strides[0] << ", " << strides[1]
                         << ", dila_: " << dilas[0] << ", " << dilas[1]
270
                         << ", group: " << group
271
                         << ", bias: " << (flag_bias ? "true" : "false")
272 273
                         << ", act: " << flag_act << ", threads: " << th
                         << ", power_mode: " << cls << " failed!!\n";
274 275 276 277 278
            }
          }
        }
        LOG(INFO) << "test fp32 conv: input: " << dim_in
                  << ", output: " << dim_out << ", weight dim: " << weight_dim
279 280 281
                  << ", pad: " << pads[0] << ", " << pads[1] << ", " << pads[2]
                  << ", " << pads[3] << ", stride: " << strides[0] << ", "
                  << strides[1] << ", dila_: " << dilas[0] << ", " << dilas[1]
282
                  << ", group: " << group
283
                  << ", bias: " << (flag_bias ? "true" : "false")
284 285
                  << ", act: " << flag_act << ", threads: " << th
                  << ", power_mode: " << cls << " successed!!\n";
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
      }
    }
  }

  delete param.x;
  delete param.filter;
  delete param.output;
  delete param.bias;
}
#else
void test_conv_fp32(const std::vector<DDim>& input_dims,
                    const DDim& weight_dim,
                    int group,
                    const std::vector<int>& strides,
                    const std::vector<int>& pads,
                    const std::vector<int>& dilas,
                    bool flag_bias,
303
                    int flag_act,
304
                    const std::vector<int>& thread_num,
305 306
                    const std::vector<int>& power_mode,
                    const float leakey_relu_scale) {}
307 308
#endif  // LITE_WITH_ARM

309
// TODO(chenjiaoAngel): fix multi-threds, diff: 3x3 depthwise conv
H
HappyAngel 已提交
310
#if 0  // 3x3dw
311 312 313
TEST(TestConv3x3DW, test_conv3x3_depthwise) {
  if (FLAGS_basic_test) {
    for (auto& stride : {1, 2}) {
H
HappyAngel 已提交
314 315 316 317 318
      for (auto& pad_left : {0, 1, 2}) {
        for (auto& pad_right : {0, 1, 2}) {
          for (auto& pad_top : {0, 1, 2}) {
            for (auto& pad_bottom : {0, 1, 2}) {
              for (auto& flag_bias : {false, true}) {
319
                for (auto& flag_act : {0, 1, 2, 4}) {
H
HappyAngel 已提交
320 321 322 323 324 325 326 327
                  for (auto& c : {1, 3, 5, 8, 16, 32}) {
                    std::vector<DDim> dims;
                    DDim weights_dim({c, 1, 3, 3});
                    for (auto& batch : {1, 2}) {
                      for (auto& h : {1, 3, 15, 19, 28, 32, 75}) {
                        dims.push_back(DDim({batch, c, h, h}));
                      }
                    }
H
HappyAngel 已提交
328 329 330 331 332 333 334
#ifdef __aarch64__
#else
                    if (stride == 1 && (pad_bottom == 2 || pad_right == 2 ||
                                        pad_top == 2 || pad_left == 2)) {
                      continue;
                    }
#endif
335
                    const float leakey_relu_scale = 8.88;
H
HappyAngel 已提交
336 337 338 339 340 341 342
                    test_conv_fp32(dims,
                                   weights_dim,
                                   c,
                                   {stride, stride},
                                   {pad_top, pad_bottom, pad_left, pad_right},
                                   {1, 1},
                                   flag_bias,
343
                                   flag_act,
344
                                   {1},
345 346
                                   {FLAGS_power_mode},
                                   leakey_relu_scale);
H
HappyAngel 已提交
347
                  }
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// 3x3dw

#if 1  /// 5x5dw
TEST(TestConv5x5DW, test_conv5x5_depthwise) {
  if (FLAGS_basic_test) {
    for (auto& stride : {1, 2}) {
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
      for (auto& pad_left : {0, 1, 2}) {
        for (auto& pad_right : {0, 1, 2}) {
          for (auto& pad_top : {0, 1, 2}) {
            for (auto& pad_bottom : {0, 1, 2}) {
              for (auto& flag_bias : {false, true}) {
                for (auto& flag_act : {0, 1, 2, 4}) {
                  for (auto& c : {1, 15, 32}) {
                    std::vector<DDim> dims;
                    DDim weights_dim({c, 1, 5, 5});
                    for (auto& batch : {1, 2}) {
                      for (auto& h : {1, 3, 15, 56}) {
                        dims.push_back(DDim({batch, c, h, h}));
                      }
                    }
                    const float leakey_relu_scale = 8.88;
                    test_conv_fp32(dims,
                                   weights_dim,
                                   c,
                                   {stride, stride},
                                   {pad_left, pad_right, pad_top, pad_bottom},
                                   {1, 1},
                                   flag_bias,
                                   flag_act,
                                   {4},
                                   {FLAGS_power_mode},
                                   leakey_relu_scale);
                  }
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// 5x5dw

#if 1  /// conv1x1s1
TEST(TestConv1x1s1, test_conv1x1s1) {
  if (FLAGS_basic_test) {
    for (auto& cin : {1, 3, 8, 11, 32}) {
      for (auto& cout : {1, 5, 16, 37}) {
        for (auto& g : {1, 2}) {
          for (auto& flag_bias : {false, true}) {
408
            for (auto& flag_act : {0, 1, 2, 4}) {
409 410 411 412 413 414 415 416 417 418
              std::vector<DDim> dims;
              if (cin % g != 0 || cout % g != 0) {
                continue;
              }
              DDim weights_dim({cout, cin / g, 1, 1});
              for (auto& batch : {1, 2}) {
                for (auto& h : {1, 7, 19, 28, 32, 56, 1}) {
                  dims.push_back(DDim({batch, cin, h, h}));
                }
              }
419
              const float leakey_relu_scale = 8.88;
420 421 422 423
              test_conv_fp32(dims,
                             weights_dim,
                             g,
                             {1, 1},
H
HappyAngel 已提交
424
                             {0, 0, 0, 0},
425 426
                             {1, 1},
                             flag_bias,
427
                             flag_act,
428
                             {1, 2, 4},
429 430
                             {FLAGS_power_mode},
                             leakey_relu_scale);
431 432 433 434 435 436 437 438 439
            }
          }
        }
      }
    }
  }
}
#endif  /// conv1x1s1

440 441
// TODO(MyPandaShaoxiang): fix me, diff: 3x3s1 winograd
#if 0   /// conv3x3s1
442 443
TEST(TestConv3x3s1, test_conv_3x3s1) {
  if (FLAGS_basic_test) {
444 445 446 447 448 449
    for (auto& cin : {1, 3, 8, 8}) {
      for (auto& cout : {1, 5, 32, 48}) {
        for (auto& pad_left : {0, 1, 2}) {
          for (auto& pad_right : {0, 1, 2}) {
            for (auto& pad_top : {0, 1, 2}) {
              for (auto& pad_bottom : {0, 1, 2}) {
H
HappyAngel 已提交
450
                for (auto& flag_bias : {false, true}) {
451
                  for (auto& flag_act : {0, 1, 2, 4}) {
H
HappyAngel 已提交
452 453 454
                    std::vector<DDim> dims;
                    DDim weights_dim({cout, cin, 3, 3});
                    for (auto& batch : {1, 2}) {
455
                      for (auto& h : {1, 3, 17, 33}) {
H
HappyAngel 已提交
456 457 458
                        dims.push_back(DDim({batch, cin, h, h}));
                      }
                    }
459
                    if (cin == 1 && cout == 1) {
460 461 462
                      continue;
                    }
                    const float leakey_relu_scale = 8.88;
H
HappyAngel 已提交
463 464 465 466 467 468 469
                    test_conv_fp32(dims,
                                   weights_dim,
                                   1,
                                   {1, 1},
                                   {pad_top, pad_bottom, pad_left, pad_right},
                                   {1, 1},
                                   flag_bias,
470 471 472 473
                                   flag_act,
                                   {4},
                                   {FLAGS_power_mode},
                                   leakey_relu_scale);
H
HappyAngel 已提交
474
                  }
475 476 477 478 479 480 481 482 483 484 485 486 487 488
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// conv3x3s1

#if 1  /// conv3x3s2
TEST(TestConv3x3s2, test_conv_3x3s2) {
  if (FLAGS_basic_test) {
489 490 491 492 493 494
    for (auto& cin : {1, 3, 8}) {
      for (auto& cout : {1, 3, 9, 32}) {
        for (auto& pad_left : {0, 1, 2}) {
          for (auto& pad_right : {0, 1, 2}) {
            for (auto& pad_top : {0, 1, 2}) {
              for (auto& pad_bottom : {0, 1, 2}) {
H
HappyAngel 已提交
495
                for (auto& flag_bias : {false, true}) {
496
                  for (auto& flag_act : {0, 1, 2, 4}) {
H
HappyAngel 已提交
497 498 499
                    std::vector<DDim> dims;
                    DDim weights_dim({cout, cin, 3, 3});
                    for (auto& batch : {1, 2}) {
500
                      for (auto& h : {3, 7, 15, 56, 32}) {
H
HappyAngel 已提交
501 502 503
                        dims.push_back(DDim({batch, cin, h, h}));
                      }
                    }
504 505 506 507
                    if (cin == 1 && cout == 1) {
                      continue;
                    }
                    const float leakey_relu_scale = 8.88;
H
HappyAngel 已提交
508 509 510 511 512 513 514
                    test_conv_fp32(dims,
                                   weights_dim,
                                   1,
                                   {2, 2},
                                   {pad_top, pad_bottom, pad_left, pad_right},
                                   {1, 1},
                                   flag_bias,
515
                                   flag_act,
H
HappyAngel 已提交
516
                                   {1, 2, 4},
517 518
                                   {FLAGS_power_mode},
                                   leakey_relu_scale);
H
HappyAngel 已提交
519
                  }
520 521 522 523 524 525 526 527 528 529 530 531 532 533
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// conv3x3s2

#if 1  /// random param conv
TEST(TestConvRand, test_conv_rand) {
  if (FLAGS_basic_test) {
534 535
    for (auto& cin : {1, 3, 8}) {
      for (auto& cout : {1, 5, 16}) {
536 537 538 539
        for (auto& g : {1, 2}) {
          for (auto& kw : {1, 2, 3}) {
            for (auto& kh : {1, 2, 3}) {
              for (auto& stride : {1, 2}) {
540 541 542 543
                for (auto& pad_left : {0, 2}) {
                  for (auto& pad_right : {0, 2}) {
                    for (auto& pad_top : {0, 2}) {
                      for (auto& pad_bottom : {0, 2}) {
H
HappyAngel 已提交
544 545
                        for (auto& dila : {1, 2}) {
                          for (auto& flag_bias : {false, true}) {
546
                            for (auto& flag_act : {0, 1, 2, 4}) {
H
HappyAngel 已提交
547 548 549 550 551 552
                              if (cin % g != 0 || cout % g != 0) {
                                continue;
                              }
                              std::vector<DDim> dims;
                              DDim weights_dim({cout, cin / g, kh, kw});
                              for (auto& batch : {1, 2}) {
553
                                for (auto& h : {1, 3, 19, 32}) {
H
HappyAngel 已提交
554 555 556
                                  dims.push_back(DDim({batch, cin, h, h}));
                                }
                              }
557 558 559 560 561 562 563 564 565 566 567
                              // skip 3x3 depthwise conv
                              if (g == cin && cin == cout && kw == 3 &&
                                  kh == 3) {
                                break;
                              }
                              // skip 3x3s1 direct conv
                              if (g == 1 && (cin != 1 || cout != 1) &&
                                  kw == 3 && kh == 3 && stride == 1) {
                                break;
                              }
                              const float leakey_relu_scale = 8.88;
H
HappyAngel 已提交
568 569 570 571 572 573 574 575
                              test_conv_fp32(
                                  dims,
                                  weights_dim,
                                  g,
                                  {stride, stride},
                                  {pad_top, pad_bottom, pad_left, pad_right},
                                  {dila, dila},
                                  flag_bias,
576 577 578 579
                                  flag_act,
                                  {4},
                                  {FLAGS_power_mode},
                                  leakey_relu_scale);
H
HappyAngel 已提交
580
                            }
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
#endif  /// random param conv

#if 1  /// custom
TEST(TestConvCustom, test_conv_fp32_custom_size) {
  CHECK_EQ(FLAGS_in_channel % FLAGS_group, 0)
      << "input channel must be divided by group";
  CHECK_EQ(FLAGS_out_channel % FLAGS_group, 0)
      << "num_output must be divided by group";
  test_conv_fp32(
      {DDim({FLAGS_batch, FLAGS_in_channel, FLAGS_in_height, FLAGS_in_width})},
      DDim({FLAGS_out_channel,
            FLAGS_in_channel / FLAGS_group,
            FLAGS_kernel_h,
            FLAGS_kernel_w}),
      FLAGS_group,
      {FLAGS_stride_h, FLAGS_stride_w},
611
      {FLAGS_pad_h0, FLAGS_pad_h1, FLAGS_pad_w0, FLAGS_pad_w1},
612 613
      {FLAGS_dila_h, FLAGS_dila_w},
      FLAGS_flag_bias,
614
      FLAGS_flag_act,
615
      {FLAGS_threads},
616 617
      {FLAGS_power_mode},
      FLAGS_leakey_relu_alpha);
618 619
}
#endif  // custom