test_resnet50.cpp 1.5 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "../test_include.h"
static const char *g_resnet_combine = "../models/resnet50";

int main() {
  DLOG << paddle_mobile::fpga::open_device();
  paddle_mobile::PaddleMobile<paddle_mobile::FPGA> paddle_mobile;
Z
zhangyang 已提交
21 22 23
  //  if (paddle_mobile.Load(std::string(g_resnet_combine) + "/model",
  //                         std::string(g_resnet_combine) + "/params", true)) {
  if (paddle_mobile.Load(std::string(g_resnet_combine), true)) {
Z
zhangyang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
    std::vector<int64_t> dims{1, 3, 224, 224};
    Tensor input_tensor;
    SetupTensor<float>(&input_tensor, {1, 3, 224, 224}, static_cast<float>(0),
                       static_cast<float>(1));

    std::vector<float> input(input_tensor.data<float>(),
                             input_tensor.data<float>() + input_tensor.numel());

    paddle_mobile.FeedData(input_tensor);
    paddle_mobile.Predict_To(-1);
    //    paddle_mobile.Predict_From(73);
    //    paddle_mobile.Predict_From_To(72, 73);

    DLOG << "Computation done";
    return 0;
  }
}