pool_compute.cu 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/kernels/cuda/pool_compute.h"
#include "lite/utils/macros.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace cuda {
using Tensor = lite::Tensor;
using DDim = lite::DDim;

#define MAX_VAL(a, b) (((a) > (b)) ? (a) : (b))
#define MIN_VAL(a, b) (((a) < (b)) ? (a) : (b))

__global__ void max_pool_kernel(const float* input,
                                float* output,
                                const int spatial_in,
                                const int spatial_out,
                                const int in_h,
                                const int in_w,
                                const int out_h,
                                const int out_w,
                                const int pad_h,
                                const int pad_w,
                                const int win_h,
                                const int win_w,
                                const int stride_h,
                                const int stride_w,
                                const int total_threads) {
  const int gid = blockIdx.x * blockDim.x + threadIdx.x;
  if (gid < total_threads) {
    const int nc_id = gid / spatial_out;
    const int w_id = gid % spatial_out % out_w;
    const int h_id = gid % spatial_out / out_w;
    const int w_s = w_id * stride_w - pad_w;
    const int iw_s = MAX_VAL(w_s, 0);
    const int iw_e = MIN_VAL(w_s + win_w, in_w);
    const int w_loop = iw_e - iw_s;
    const int h_s = h_id * stride_h - pad_h;
    const int ih_s = MAX_VAL(h_s, 0);
    const int ih_e = MIN_VAL(h_s + win_h, in_h);
    const int h_loop = ih_e - ih_s;
    const float* in_p = input + nc_id * spatial_in + ih_s * in_w + iw_s;
    float max_val = -FLT_MAX;
    for (int i = 0; i < h_loop; ++i) {
      for (int j = 0; j < w_loop; ++j) {
        max_val = MAX_VAL(max_val, *(in_p + j));
      }
      in_p += in_w;
    }
    max_val = max_val == -FLT_MAX ? 0.f : max_val;
    output[nc_id * spatial_out + h_id * out_w + w_id] = max_val;
  }
}

__global__ void adaptive_max_pool_kernel(const float* input,
                                         float* output,
                                         const int spatial_in,
                                         const int spatial_out,
                                         const int in_h,
                                         const int in_w,
                                         const int out_h,
                                         const int out_w,
                                         const int pad_h,
                                         const int pad_w,
                                         const int win_h,
                                         const int win_w,
                                         const int stride_h,
                                         const int stride_w,
                                         const int total_threads) {
  const int gid = blockIdx.x * blockDim.x + threadIdx.x;
  if (gid < total_threads) {
    const int nc_id = gid / spatial_out;
    const int w_id = gid % spatial_out % out_w;
    const int h_id = gid % spatial_out / out_w;
    const int iw_s = floor(static_cast<double>(w_id * in_w) / out_w);
    const int iw_e = ceil(static_cast<double>((w_id + 1) * in_w) / out_w);
    const int w_loop = iw_e - iw_s;
    const int ih_s = floor(static_cast<double>(h_id * in_h) / out_h);
    const int ih_e = ceil(static_cast<double>((h_id + 1) * in_h) / out_h);
    const int h_loop = ih_e - ih_s;
    const float* in_p = input + nc_id * spatial_in + ih_s * in_w + iw_s;
    float max_val = -FLT_MAX;
    for (int i = 0; i < h_loop; ++i) {
      for (int j = 0; j < w_loop; ++j) {
        max_val = MAX_VAL(max_val, *(in_p + j));
      }
      in_p += in_w;
    }
    output[nc_id * spatial_out + h_id * out_w + w_id] = max_val;
  }
}

__global__ void avg_pool_kernel(const float* input,
                                float* output,
                                const int spatial_in,
                                const int spatial_out,
                                const int in_h,
                                const int in_w,
                                const int out_h,
                                const int out_w,
                                const int pad_h,
                                const int pad_w,
                                const int win_h,
                                const int win_w,
                                const int stride_h,
                                const int stride_w,
                                bool exclusive,
                                const int total_threads) {
  const int gid = blockIdx.x * blockDim.x + threadIdx.x;
  if (gid < total_threads) {
    const int nc_id = gid / spatial_out;
    const int w_id = gid % spatial_out % out_w;
    const int h_id = gid % spatial_out / out_w;
    const int w_s = w_id * stride_w - pad_w;
    const int iw_s = MAX_VAL(w_s, 0);
    const int iw_e = MIN_VAL(w_s + win_w, in_w);
    const int w_loop = iw_e - iw_s;
    const int h_s = h_id * stride_h - pad_h;
    const int ih_s = MAX_VAL(h_s, 0);
    const int ih_e = MIN_VAL(h_s + win_h, in_h);
    const int h_loop = ih_e - ih_s;
    const float* in_p = input + nc_id * spatial_in + ih_s * in_w + iw_s;
    float sum_val = 0.f;
    for (int i = 0; i < h_loop; ++i) {
      for (int j = 0; j < w_loop; ++j) {
        sum_val += *(in_p + j);
      }
      in_p += in_w;
    }
    int pool_size = exclusive ? h_loop * w_loop : win_w * win_h;
    pool_size = pool_size == 0 ? 1 : pool_size;
    output[nc_id * spatial_out + h_id * out_w + w_id] = sum_val / pool_size;
  }
}

__global__ void adaptive_avg_pool_kernel(const float* input,
                                         float* output,
                                         const int spatial_in,
                                         const int spatial_out,
                                         const int in_h,
                                         const int in_w,
                                         const int out_h,
                                         const int out_w,
                                         const int pad_h,
                                         const int pad_w,
                                         const int win_h,
                                         const int win_w,
                                         const int stride_h,
                                         const int stride_w,
                                         const int total_threads) {
  const int gid = blockIdx.x * blockDim.x + threadIdx.x;
  if (gid < total_threads) {
    const int nc_id = gid / spatial_out;
    const int w_id = gid % spatial_out % out_w;
    const int h_id = gid % spatial_out / out_w;
    const int iw_s = floor(static_cast<double>(w_id * in_w) / out_w);
    const int iw_e = ceil(static_cast<double>((w_id + 1) * in_w) / out_w);
    const int w_loop = iw_e - iw_s;
    const int ih_s = floor(static_cast<double>(h_id * in_h) / out_h);
    const int ih_e = ceil(static_cast<double>((h_id + 1) * in_h) / out_h);
    const int h_loop = ih_e - ih_s;
    const float* in_p = input + nc_id * spatial_in + ih_s * in_w + iw_s;
    float sum_val = 0.f;
    for (int i = 0; i < h_loop; ++i) {
      for (int j = 0; j < w_loop; ++j) {
        sum_val += *(in_p + j);
      }
      in_p += in_w;
    }
    int pool_size = h_loop * w_loop;
    pool_size = pool_size == 0 ? 1 : pool_size;
    output[nc_id * spatial_out + h_id * out_w + w_id] = sum_val / pool_size;
  }
}

__global__ void global_max_pool_kernel(const float* input,
                                       float* output,
                                       const int in_h,
                                       const int in_w,
                                       const int total_threads) {
  const int gid = blockIdx.x * blockDim.x + threadIdx.x;
  if (gid < total_threads) {
    const int spatial_in = in_h * in_w;
    const float* in_p = input + gid * spatial_in;
    int i = 0;
    float max_val = -0.f;
    // unroll 8
    for (; i < spatial_in - 7; i += 8) {
      max_val = MAX_VAL(max_val, *(in_p + 0));
      max_val = MAX_VAL(max_val, *(in_p + 1));
      max_val = MAX_VAL(max_val, *(in_p + 2));
      max_val = MAX_VAL(max_val, *(in_p + 3));
      max_val = MAX_VAL(max_val, *(in_p + 4));
      max_val = MAX_VAL(max_val, *(in_p + 5));
      max_val = MAX_VAL(max_val, *(in_p + 6));
      max_val = MAX_VAL(max_val, *(in_p + 7));
      in_p += 8;
    }
    for (; i < spatial_in; i++) {
      max_val = MAX_VAL(max_val, *in_p);
      in_p++;
    }
    output[gid] = max_val;
  }
}

__global__ void global_avg_pool_kernel(const float* input,
                                       float* output,
                                       const int in_h,
                                       const int in_w,
                                       const int total_threads) {
  const int gid = blockIdx.x * blockDim.x + threadIdx.x;
  if (gid < total_threads) {
    const int spatial_in = in_h * in_w;
    const float* in_p = input + gid * spatial_in;
    int i = 0;
    float sum_val = 0.f;
    // unroll 8
    for (; i < spatial_in - 7; i += 8) {
      sum_val += *in_p++;
      sum_val += *in_p++;
      sum_val += *in_p++;
      sum_val += *in_p++;
      sum_val += *in_p++;
      sum_val += *in_p++;
      sum_val += *in_p++;
      sum_val += *in_p++;
    }
    for (; i < spatial_in; i++) {
      sum_val += *in_p++;
    }
    output[gid] = sum_val / spatial_in;
  }
}

void PoolCompute::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<CUDAContext>();
  auto stream = ctx.exec_stream();

  bool exclusive = param.exclusive;
  bool adaptive = param.adaptive;
  auto x_dims = param.x->dims();
  auto out_dims = param.output->dims();
259
  auto paddings = *param.paddings;
260 261 262 263 264 265 266 267 268 269
  const int in_h = x_dims[2];
  const int in_w = x_dims[3];
  const int out_h = out_dims[2];
  const int out_w = out_dims[3];
  const int spatial_in = in_h * in_w;
  const int spatial_out = out_h * out_w;
  const int win_h = param.ksize[0];
  const int win_w = param.ksize[1];
  const int stride_h = param.strides[0];
  const int stride_w = param.strides[1];
270 271
  const int pad_h = paddings[0];
  const int pad_w = paddings[2];
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
  const int total_threads = out_dims.production();
  const int threads = 512;
  const int blocks = (total_threads + threads - 1) / threads;
  auto input_data = param.x->data<float>();
  auto output_data = param.output->mutable_data<float>(TARGET(kCUDA));
  if (param.global_pooling) {
    if (param.pooling_type == "max") {
      global_max_pool_kernel<<<blocks, threads, 0, stream>>>(
          input_data, output_data, in_h, in_w, total_threads);
    } else {
      global_avg_pool_kernel<<<blocks, threads, 0, stream>>>(
          input_data, output_data, in_h, in_w, total_threads);
    }
  } else {
    if (!adaptive) {
      if (param.pooling_type == "max") {
        max_pool_kernel<<<blocks, threads, 0, stream>>>(input_data,
                                                        output_data,
                                                        spatial_in,
                                                        spatial_out,
                                                        in_h,
                                                        in_w,
                                                        out_h,
                                                        out_w,
                                                        pad_h,
                                                        pad_w,
                                                        win_h,
                                                        win_w,
                                                        stride_h,
                                                        stride_w,
                                                        total_threads);
      } else {
        avg_pool_kernel<<<blocks, threads, 0, stream>>>(input_data,
                                                        output_data,
                                                        spatial_in,
                                                        spatial_out,
                                                        in_h,
                                                        in_w,
                                                        out_h,
                                                        out_w,
                                                        pad_h,
                                                        pad_w,
                                                        win_h,
                                                        win_w,
                                                        stride_h,
                                                        stride_w,
                                                        exclusive,
                                                        total_threads);
      }
    } else {
      if (param.pooling_type == "max") {
        adaptive_max_pool_kernel<<<blocks, threads, 0, stream>>>(input_data,
                                                                 output_data,
                                                                 spatial_in,
                                                                 spatial_out,
                                                                 in_h,
                                                                 in_w,
                                                                 out_h,
                                                                 out_w,
                                                                 pad_h,
                                                                 pad_w,
                                                                 win_h,
                                                                 win_w,
                                                                 stride_h,
                                                                 stride_w,
                                                                 total_threads);
      } else {
        adaptive_avg_pool_kernel<<<blocks, threads, 0, stream>>>(input_data,
                                                                 output_data,
                                                                 spatial_in,
                                                                 spatial_out,
                                                                 in_h,
                                                                 in_w,
                                                                 out_h,
                                                                 out_w,
                                                                 pad_h,
                                                                 pad_w,
                                                                 win_h,
                                                                 win_w,
                                                                 stride_h,
                                                                 stride_w,
                                                                 total_threads);
      }
    }
  }
  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(FATAL) << cudaGetErrorString(error);
}

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
inline int PoolOutputSize(
    int input_size, int filter_size, int padding, int stride, bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
  return output_size;
}

void PoolComputeNHWC::PrepareForRun() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<CUDAContext>();
  pool_impl_.reset(new lite::cuda::math::CudnnPool2DNHWC<PRECISION(kFloat)>);
  pool_impl_->init(param, &ctx);
}

void PoolComputeNHWC::Run() {
  auto& param = this->Param<param_t>();
  auto& ctx = this->ctx_->template As<CUDAContext>();
  auto stream = ctx.exec_stream();
  const auto x_dims = param.x->dims();
  std::vector<int>& ksize = param.ksize;
  if (param.global_pooling) {
    ksize.resize(static_cast<size_t>(x_dims.size()) - 2);
    for (size_t i = 0; i < ksize.size(); ++i) {
      (*param.paddings)[i] = 0;
      ksize[i] = static_cast<int>(x_dims[i + 1]);
    }
  }

  std::vector<int64_t> output_shape({x_dims[0]});
  if (param.adaptive) {
    output_shape.insert(
        output_shape.end(), param.ksize.begin(), param.ksize.end());
  } else {
    for (size_t i = 0; i < param.ksize.size(); ++i) {
      output_shape.push_back(PoolOutputSize(x_dims[i + 1],
                                            param.ksize[i],
                                            (*param.paddings)[i],
                                            param.strides[i],
                                            param.ceil_mode));
    }
  }
  output_shape.push_back(x_dims[3]);
  param.output->Resize(lite::DDim(output_shape));

  pool_impl_->run(param);

  cudaError_t error = cudaGetLastError();
  if (error != cudaSuccess) LOG(FATAL) << cudaGetErrorString(error);
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
}  // namespace cuda
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(
    pool2d, kCUDA, kFloat, kNCHW, paddle::lite::kernels::cuda::PoolCompute, def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

REGISTER_LITE_KERNEL(pool2d,
                     kCUDA,
                     kFloat,
                     kNHWC,
                     paddle::lite::kernels::cuda::PoolComputeNHWC,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kCUDA),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kCUDA),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNHWC))})
    .Finalize();