tanh_kernel.cpp 2.6 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef TANH_OP

#include "operators/kernel/tanh_kernel.h"
18
#include <math.h>
Z
zhangyang 已提交
19 20 21 22 23
namespace paddle_mobile {
namespace operators {

template <>
bool TanhKernel<FPGA, float>::Init(TanhParam<FPGA> *param) {
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
  auto input = const_cast<LoDTensor *>(param->InputX());
  DLOG << "input: " << input;
  auto input_ptr = input->data<half>();
  auto float_input = new LoDTensor;

  float_input->mutable_data<float>(
      {1, input->dims()[1], input->dims()[2], input->dims()[3]});
  fpga::format_fp32_ofm(float_input);

  fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
  args.input_layout_type = fpga::LAYOUT_HWC;
  args.output_layout_type = fpga::LAYOUT_CHW;
  args.input_data_type = fpga::DATA_TYPE_FP16;
  args.output_data_type = fpga::DATA_TYPE_FP32;
  args.image.address = input_ptr;
  args.image.height = (uint32_t)input->dims()[2];
  args.image.width = (uint32_t)input->dims()[3];
  args.image.channels = (uint32_t)input->dims()[1];
  args.output.address = float_input->data<float>();
  args.output.scale_address = float_input->scale;
  param->SetFloatInput(float_input);
  param->SetFpgaArgs(args);
Z
zhangyang 已提交
46 47 48
  return true;
}

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
#define EXP_MAX_INPUT 40.0
template <typename T>
T Tanh(const T a) {
  T tmp = -2.0 * a;
  tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp;
  return (2.0 / (1.0 + exp(tmp))) - 1.0;
}
template <typename T>
void tanhFuntor(Tensor *input, Tensor *output) {
  auto *input_ptr = input->data<T>();
  auto *output_ptr = output->mutable_data<T>();
  for (int i = 0; i < input->numel(); i++) {
    *(output_ptr + i) = Tanh<T>(*(input_ptr + i));
  }
}
Z
zhangyang 已提交
64
template <>
65 66 67 68 69 70 71 72 73 74
void TanhKernel<FPGA, float>::Compute(const TanhParam<FPGA> &param) {
  Tensor *in_x = param.FloatInput();
  Tensor *out = param.Out();

  fpga::PerformBypass(param.FpgaArgs());
  fpga::fpga_invalidate(reinterpret_cast<void *>(in_x->data<float>()),
                        in_x->numel() * sizeof(float));
  tanhFuntor<float>(in_x, out);
  fpga::fpga_flush(out->data<float>(), out->memory_size());
}
Z
zhangyang 已提交
75 76 77 78 79

}  // namespace operators
}  // namespace paddle_mobile

#endif