api.cpp 13.0 KB
Newer Older
qnqinan's avatar
qnqinan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "fpga/V2/api.h"
#include <algorithm>
#include "fpga/V2/bias_scale.h"
#include "fpga/V2/config.h"
qnqinan's avatar
qnqinan 已提交
19 20
<<<<<<< HEAD
=======
Z
zhangyang 已提交
21
#include "fpga/V2/driver/driver.h"
qnqinan's avatar
qnqinan 已提交
22
>>>>>>> upstream/develop
qnqinan's avatar
qnqinan 已提交
23 24 25 26 27
#include "fpga/V2/filter.h"
#include "fpga/V2/image.h"

namespace paddle_mobile {
namespace fpga {
qnqinan's avatar
qnqinan 已提交
28
<<<<<<< HEAD
qnqinan's avatar
qnqinan 已提交
29 30 31 32
static std::map<void *, size_t> memory_map;

int open_device() {
  int ret = open_device_driver();
qnqinan's avatar
qnqinan 已提交
33
=======
Z
zhangyang 已提交
34

35
static std::map<void *, size_t> memory_map;
H
hanbuhe 已提交
36

Z
zhangyang 已提交
37
int open_device() {
Z
zhangyang 已提交
38
  int ret = driver::open_device_driver();
qnqinan's avatar
qnqinan 已提交
39
>>>>>>> upstream/develop
qnqinan's avatar
qnqinan 已提交
40 41 42 43
  return ret;
}

int close_device() {
qnqinan's avatar
qnqinan 已提交
44
<<<<<<< HEAD
qnqinan's avatar
qnqinan 已提交
45
  int ret = close_device_driver();
qnqinan's avatar
qnqinan 已提交
46
=======
Z
zhangyang 已提交
47
  int ret = driver::close_device_driver();
qnqinan's avatar
qnqinan 已提交
48
>>>>>>> upstream/develop
qnqinan's avatar
qnqinan 已提交
49 50 51 52 53 54
  return ret;
}

void *fpga_malloc(size_t size) {
  static uint64_t counter = 0;
#ifdef PADDLE_MOBILE_ZU5
qnqinan's avatar
qnqinan 已提交
55
<<<<<<< HEAD
qnqinan's avatar
qnqinan 已提交
56
  auto ptr = fpga_malloc_driver(size);
qnqinan's avatar
qnqinan 已提交
57
=======
Z
zhangyang 已提交
58
  auto ptr = driver::fpga_malloc_driver(size);
qnqinan's avatar
qnqinan 已提交
59
>>>>>>> upstream/develop
qnqinan's avatar
qnqinan 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#else
  auto ptr = malloc(size);
#endif
  counter += size;
  memory_map.insert(std::make_pair(ptr, size));
  //  DLOG << "Address: " << ptr << ", " << size << " bytes allocated. Total "
  //       << counter << " bytes";
  return ptr;
}

void fpga_free(void *ptr) {
  static uint64_t counter = 0;
  size_t size = 0;
  auto iter = memory_map.find(ptr);  // std::map<void *, size_t>::iterator
  if (iter != memory_map.end()) {
    size = iter->second;
    memory_map.erase(iter);
#ifdef PADDLE_MOBILE_ZU5
qnqinan's avatar
qnqinan 已提交
78
<<<<<<< HEAD
qnqinan's avatar
qnqinan 已提交
79
    fpga_free_driver(ptr);
qnqinan's avatar
qnqinan 已提交
80
=======
Z
zhangyang 已提交
81
    driver::fpga_free_driver(ptr);
qnqinan's avatar
qnqinan 已提交
82
>>>>>>> upstream/develop
qnqinan's avatar
qnqinan 已提交
83 84 85 86 87 88 89 90 91 92
#else
    free(ptr);
#endif
    counter += size;
    //    DLOG << "Address: " << ptr << ", " << size << " bytes freed. Total "
    //         << counter << " bytes";
  } else {
    DLOG << "Invalid pointer";
  }
}
qnqinan's avatar
qnqinan 已提交
93
<<<<<<< HEAD
qnqinan's avatar
qnqinan 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

half fp32_2_fp16(float fp32_num) {
  unsigned long tmp = *(unsigned long *)(&fp32_num);  // NOLINT
  auto t = (half)(((tmp & 0x007fffff) >> 13) | ((tmp & 0x80000000) >> 16) |
                  (((tmp & 0x7f800000) >> 13) - (112 << 10)));
  if (tmp & 0x1000) {
    t++;  // roundoff
  }
  return t;
}

float fp16_2_fp32(half fp16_num) {
  int frac = (fp16_num & 0x3ff);
  int exp = ((fp16_num & 0x7c00) >> 10) + 112;
  int s = fp16_num & 0x8000;
  int tmp = 0;
  float fp32_num;
  tmp = s << 16 | exp << 23 | frac << 13;
  fp32_num = *(float *)&tmp;  // NOLINT
  return fp32_num;
qnqinan's avatar
qnqinan 已提交
114
=======
Z
zhangyang 已提交
115 116 117 118 119 120
void fpga_copy(void *dest, const void *src, size_t num) {
#ifdef PADDLE_MOBILE_ZU5
  driver::fpga_copy_driver(dest, src, num);
#else
  memcpy(dest, src, num);
#endif
Z
zhangyang 已提交
121 122
}

Z
zhangyang 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135
int fpga_flush(void *address, size_t size) {
#ifdef PADDLE_MOBILE_ZU5
  return driver::fpga_flush_driver(address, size);
#else
  return 0;
#endif
}
int fpga_invalidate(void *address, size_t size) {
#ifdef PADDLE_MOBILE_ZU5
  return driver::fpga_invalidate_driver(address, size);
#else
  return 0;
#endif
qnqinan's avatar
qnqinan 已提交
136
>>>>>>> upstream/develop
qnqinan's avatar
qnqinan 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
}

void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
  auto channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = image_tensor->data<float>();
  size_t memory_size = channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);
  int aligned_channel = filter::calc_aligned_channel((int)channel);  // NOLINT
  image::format_image(&new_data, (int)channel, (int)height,          // NOLINT
                      (int)width,                                    // NOLINT
                      aligned_channel);
  image_tensor->reset_data_ptr(new_data);
}

void format_fp16_ofm(framework::Tensor *ofm_tensor, int aligned_channel) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto height = dims[2], width = dims[3];
    memory_size = (height + 1) / 2 * 2 * width * aligned_channel * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = aligned_channel * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

void format_fp32_ofm(framework::Tensor *ofm_tensor, int aligned_channel) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto height = dims[2], width = dims[3];
    memory_size = height * width * aligned_channel * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = aligned_channel * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, (int)filter_tensor->numel());  // NOLINT
}

int get_aligned_channel_num(int channel_num) {
  return filter::calc_aligned_channel(channel_num);
}

int get_aligned_filter_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
  return filter::calc_aligned_num((int)dims[0], (int)dims[1]);  // NOLINT
}

int get_conv_output_channel(framework::Tensor *filter_tensor) {
  int aligned_filter_num = get_aligned_filter_num(filter_tensor);
  return get_aligned_channel_num(aligned_filter_num);
}
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, (int)num, (int)channel,  // NOLINT
                        (int)height,                        // NOLINT
                        (int)width, group_num, max_value);  // NOLINT
  filter_tensor->reset_data_ptr(new_data);
}

void format_fc_filter(framework::Tensor *filter_tensor, float max_value) {
  filter_tensor->scale[0] = float(max_value / 127.0);  // NOLINT
  filter_tensor->scale[1] = float(127.0 / max_value);  // NOLINT
  auto dims = filter_tensor->dims();
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
  auto data_ptr = filter_tensor->data<float>();
  size_t memory_size = num * channel * height * width * sizeof(float);
  auto new_data = (float *)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, data_ptr, memory_size);
  filter::format_fc_filter(&new_data, (int)num, (int)channel,  // NOLINT
                           (int)height,                        // NOLINT
                           (int)width, 1, max_value);          // NOLINT
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array, int filter_num,
                             int filter_channel) {
  int num_after_alignment =
      filter::calc_aligned_num(filter_channel, filter_channel);
  bias_scale::format_bias_scale_array(bias_scale_array, filter_num,
                                      num_after_alignment);
}

void format_concat_output(framework::Tensor *out, int height, int width,
                          uint32_t out_channel) {
  auto data_ptr = fpga_malloc(out_channel * height * width * sizeof(half));
  auto ddim = framework::make_ddim({1, out_channel, height, width});
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

int format_conv_data(framework::Tensor *filter_tensor,
                     framework::Tensor *ofm_tensor, float *bs_ptr, int group) {
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_filter(filter_tensor, max_value, group);
  int aligned_num = get_aligned_filter_num(filter_tensor);
  fpga::format_bias_scale_array(&bs_ptr,
                                (int)filter_tensor->dims()[0],  // NOLINT
                                aligned_num);
  int aligned_channel = fpga::get_conv_output_channel(filter_tensor);
  fpga::format_fp16_ofm(ofm_tensor, aligned_channel);
  DLOG << aligned_channel;
  return aligned_channel;
}

int format_fc_data(framework::Tensor *filter_tensor,
                   framework::Tensor *ofm_tensor, float *bs_ptr) {
  float max_value = fpga::filter_find_max(filter_tensor);
  fpga::format_fc_filter(filter_tensor, max_value);
  int aligned_num = get_aligned_filter_num(filter_tensor);
  fpga::format_bias_scale_array(&bs_ptr,
                                (int)filter_tensor->dims()[0],  // NOLINT
                                aligned_num);
  int aligned_channel = fpga::get_conv_output_channel(filter_tensor);
  fpga::format_fp16_ofm(ofm_tensor, aligned_channel);
  DLOG << aligned_channel;
  return aligned_channel;
}

void fill_split_arg(struct SplitConvArgs *arg, framework::Tensor *input,
                    framework::Tensor *out, framework::Tensor *filter,
                    bool relu_enabled, int group_num, int stride_h,
                    int stride_w, int padding_h, int padding_w, float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
  auto out_ptr = out->data<float>();

  arg->group_num = (uint32_t)group_num;
  arg->split_num = 1;
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
qnqinan's avatar
qnqinan 已提交
291
<<<<<<< HEAD
qnqinan's avatar
qnqinan 已提交
292
  arg->conv_args =
qnqinan's avatar
qnqinan 已提交
293
=======
Z
zhangyang 已提交
294
  arg->conv_arg =
qnqinan's avatar
qnqinan 已提交
295
>>>>>>> upstream/develop
qnqinan's avatar
qnqinan 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
      (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));  // NOLINT

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
  arg->concat_arg.height = (uint32_t)out->dims()[2];
  arg->concat_arg.width = (uint32_t)out->dims()[3];

  int n = arg->split_num;
  arg->concat_arg.images_in =
      (half **)fpga_malloc(n * sizeof(int *));  // NOLINT
  arg->concat_arg.scales_in =
      (float **)fpga_malloc(n * sizeof(float *));  // NOLINT
  arg->concat_arg.channel_num =
      (uint32_t *)fpga_malloc(n * sizeof(uint32_t));  // NOLINT

  for (int i = 0; i < n; i++) {
qnqinan's avatar
qnqinan 已提交
313
<<<<<<< HEAD
qnqinan's avatar
qnqinan 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    arg->conv_args[i].relu_enabled = relu_enabled;
    arg->conv_args[i].sb_address = bs_ptr;
    arg->conv_args[i].filter_address = (int8_t *)filter_ptr;  // NOLINT
    arg->conv_args[i].filter_scale_address = filter->scale;
    arg->conv_args[i].filter_num = arg->filter_num;
    arg->conv_args[i].group_num = (uint32_t)group_num;

    arg->conv_args[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_args[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_args[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_args[i].kernel.width = (uint32_t)filter->dims()[3];

    arg->conv_args[i].image.address = input_ptr;
    arg->conv_args[i].image.scale_address = input->scale;
    arg->conv_args[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_args[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_args[i].image.pad_width = (uint32_t)padding_w;

    arg->conv_args[i].output.address = out_ptr;
    arg->conv_args[i].output.scale_address = out->scale;
qnqinan's avatar
qnqinan 已提交
336
=======
Z
zhangyang 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    arg->conv_arg[i].relu_enabled = relu_enabled;
    arg->conv_arg[i].sb_address = bs_ptr;
    arg->conv_arg[i].filter_address = (int8_t *)filter_ptr;  // NOLINT
    arg->conv_arg[i].filter_scale_address = filter->scale;
    arg->conv_arg[i].filter_num = arg->filter_num;
    arg->conv_arg[i].group_num = (uint32_t)group_num;

    arg->conv_arg[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_arg[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_arg[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_arg[i].kernel.width = (uint32_t)filter->dims()[3];

    arg->conv_arg[i].image.address = input_ptr;
    arg->conv_arg[i].image.scale_address = input->scale;
    arg->conv_arg[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_arg[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_arg[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_arg[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_arg[i].image.pad_width = (uint32_t)padding_w;

    arg->conv_arg[i].output.address = out_ptr;
    arg->conv_arg[i].output.scale_address = out->scale;

    int num_after_alignment =
        filter::calc_aligned_num((int)input->dims()[1], arg->filter_num);
    arg->conv_arg[i].free_space =
        fpga_malloc(num_after_alignment * 2 * sizeof(half));
qnqinan's avatar
qnqinan 已提交
364
>>>>>>> upstream/develop
qnqinan's avatar
qnqinan 已提交
365 366 367 368 369
  }
}

}  // namespace fpga
}  // namespace paddle_mobile