reduce_mean_compute_test.cc 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"

namespace paddle {
namespace lite {

void reduce_mean_n(const float* src,
                   float* dst,
                   int num_in,
                   int channel_in,
                   int height_in,
                   int width_in) {
  int hw_size = height_in * width_in;
  int chw_size = channel_in * hw_size;
  int data_index, src_index, src_index0;
  for (int c = 0; c < channel_in; ++c) {
    for (int h = 0; h < height_in; ++h) {
      for (int w = 0; w < width_in; ++w) {
        data_index = c * hw_size + h * width_in + w;
        dst[data_index] = 0.0;
        for (int n = 1; n < num_in; ++n) {
          src_index = n * chw_size + data_index;
          dst[data_index] += static_cast<float>(src[src_index]) / num_in;
        }
      }
    }
  }
}

void reduce_mean_c(const float* src,
                   float* dst,
                   int num_in,
                   int channel_in,
                   int height_in,
                   int width_in) {
  int hw_size = height_in * width_in;
  int chw_size = hw_size * channel_in;
  int data_index, src_index0, src_index;
  for (int n = 0; n < num_in; ++n) {
    for (int h = 0; h < height_in; ++h) {
      for (int w = 0; w < width_in; ++w) {
        data_index = n * hw_size + h * width_in + w;
        src_index0 = n * chw_size + h * width_in + w;
        dst[data_index] = 0.0;
        for (int c = 1; c < channel_in; ++c) {
          src_index = src_index0 + c * hw_size;
          dst[data_index] += static_cast<float>(src[src_index]) / channel_in;
        }
      }
    }
  }
}

void reduce_mean_h(const float* src,
                   float* dst,
                   int num_in,
                   int channel_in,
                   int height_in,
                   int width_in) {
  int cw_size = channel_in * width_in;
  int chw_size = cw_size * height_in;
  int hw_size = height_in * width_in;
  int data_index, src_index, src_index0;
  for (int n = 0; n < num_in; ++n) {
    for (int c = 0; c < channel_in; ++c) {
      for (int w = 0; w < width_in; ++w) {
        data_index = n * cw_size + c * width_in + w;
        src_index0 = n * chw_size + c * hw_size + w;
        dst[data_index] = 0.0;
        for (int h = 1; h < height_in; ++h) {
          src_index = src_index0 + h * width_in;
          dst[data_index] += static_cast<float>(src[src_index]) / height_in;
        }
      }
    }
  }
}

void reduce_mean_w(const float* src,
                   float* dst,
                   int num_in,
                   int channel_in,
                   int height_in,
                   int width_in) {
  int ch_size = channel_in * height_in;
  int hw_size = height_in * width_in;
  int chw_size = ch_size * width_in;
  int data_index = 0;
  int src_index0 = 0;
  int src_index = 0;
  for (int n = 0; n < num_in; ++n) {
    for (int c = 0; c < channel_in; ++c) {
      for (int h = 0; h < height_in; ++h) {
        data_index = n * ch_size + c * height_in + h;
        src_index0 = n * chw_size + c * hw_size + h * width_in;
        dst[data_index] = 0.0;
        for (int w = 1; w < width_in; ++w) {
          src_index = src_index0 + w;
          dst[data_index] += static_cast<float>(src[src_index]) / width_in;
        }
      }
    }
  }
}

void reduce_mean_all(const float* src,
                     float* dst,
                     int num_in,
                     int channel_in,
                     int height_in,
                     int width_in) {
  float mean = 0.0;
  int src_index;
  int n_id, c_id;
  int all = num_in * channel_in * height_in * width_in;
  for (int n = 0; n < num_in; ++n) {
    n_id = n * channel_in * height_in * width_in;
    for (int c = 0; c < channel_in; ++c) {
      c_id = c * height_in * width_in;
      for (int h = 0; h < height_in; ++h) {
        for (int w = 0; w < width_in; ++w) {
          src_index = n_id + c_id + h * width_in + w;
          mean = src[src_index] / all;
        }
      }
    }
  }
  dst[0] = mean;
}

void reduce_mean_nc(const float* src,
                    float* dst,
                    int num_in,
                    int channel_in,
                    int height_in,
                    int width_in) {
  // reduce n first.
  DDimLite ddimA({1, channel_in, height_in, width_in});
  lite::Tensor tensor_tmp;
  tensor_tmp.Resize(ddimA);
  float* tmp_out = tensor_tmp.mutable_data<float>();
  reduce_mean_n(src, tmp_out, num_in, channel_in, height_in, width_in);
  reduce_mean_c(tmp_out, dst, 1, channel_in, height_in, width_in);
}

void reduce_mean_ch(const float* src,
                    float* dst,
                    int num_in,
                    int channel_in,
                    int height_in,
                    int width_in) {
  // reduce c first
  DDimLite ddimA({num_in, 1, height_in, width_in});
  lite::Tensor tensor_tmp;
  tensor_tmp.Resize(ddimA);
  float* tmp_out = tensor_tmp.mutable_data<float>();
  reduce_mean_c(src, tmp_out, num_in, channel_in, height_in, width_in);
  reduce_mean_h(tmp_out, dst, num_in, 1, height_in, width_in);
}

void reduce_mean_hw(const float* src,
                    float* dst,
                    int num_in,
                    int channel_in,
                    int height_in,
                    int width_in) {
  // reduce h first
  DDimLite ddimA({num_in, channel_in, 1, width_in});
  lite::Tensor tensor_tmp;
  tensor_tmp.Resize(ddimA);
  float* tmp_out = tensor_tmp.mutable_data<float>();
  reduce_mean_h(src, tmp_out, num_in, channel_in, height_in, width_in);
  reduce_mean_w(tmp_out, dst, num_in, channel_in, 1, width_in);
}

class ReduceMeanComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string input_ = "x";
  std::string output_ = "out";
  std::vector<int> dim_{0};
  DDim x_dims_{{3, 2, 3, 4}};
  bool keep_dim_ = false;
  bool reduce_all_ = false;

 public:
  ReduceMeanComputeTester(const Place& place,
                          const std::string& alias,
                          std::vector<int> dim,
                          bool keep_dim,
                          DDim x_dims)
      : TestCase(place, alias),
        dim_(dim),
        keep_dim_(keep_dim),
        x_dims_(x_dims) {}

  void RunBaseline(Scope* scope) override {
    auto* x = scope->FindMutableTensor(input_);
    const auto* x_data = x->data<float>();
    auto* out = scope->NewTensor(output_);
    auto x_rank = x_dims_.size();
    if (!dim_.empty()) {
      for (int i = 0; i < dim_.size(); i++) {
        if (dim_[i] < 0) {
          dim_[i] += x_rank;
        }
      }
    }

    sort(dim_.begin(), dim_.end());
    if (dim_.size() == 0) {
      reduce_all_ = true;
    }
    std::vector<int64_t> out_dims;
    if (reduce_all_) {
      if (keep_dim_) {
        out_dims.push_back(x_rank);
        out_dims.push_back(1);
      } else {
        out_dims.push_back(1);
      }
    } else {
      for (int i = 0; i < x_dims_.size(); i++) {
        out_dims.push_back(x_dims_[i]);
      }
      if (keep_dim_) {
        for (size_t i = 0; i < dim_.size(); ++i) {
          out_dims[dim_[i]] = 1L;
        }
      } else {
        int64_t kDelFlag = -2;
        for (size_t i = 0; i < dim_.size(); ++i) {
          out_dims[dim_[i]] = kDelFlag;
        }
        out_dims.erase(remove(out_dims.begin(), out_dims.end(), kDelFlag),
                       out_dims.end());
      }
      out->Resize(DDim(out_dims));
    }

    auto* out_data = out->mutable_data<float>();
    int in_n = x_dims_[0];
    int in_c = x_dims_[1];
    int in_h = x_dims_[2];
    int in_w = x_dims_[3];

    if (dim_.size() == 0) {
      reduce_mean_all(x_data, out_data, in_n, in_c, in_h, in_w);
    } else if (dim_.size() == 1) {
      switch (dim_[0]) {
        case 0:
          reduce_mean_n(x_data, out_data, in_n, in_c, in_h, in_w);
          break;
        case 1:
          reduce_mean_c(x_data, out_data, in_n, in_c, in_h, in_w);
          break;
        case 2:
          reduce_mean_h(x_data, out_data, in_n, in_c, in_h, in_w);
          break;
        case 3:
          reduce_mean_w(x_data, out_data, in_n, in_c, in_h, in_w);
          break;
        default:
          LOG(FATAL) << "error!!!";
      }
    } else if (dim_.size() == 2) {
      if (dim_[0] == 0 && dim_[1] == 1) {
        reduce_mean_nc(x_data, out_data, in_n, in_c, in_h, in_w);
      } else if (dim_[0] == 1 && dim_[1] == 2) {
        reduce_mean_ch(x_data, out_data, in_n, in_c, in_h, in_w);
      } else if (dim_[0] == 2 && dim_[1] == 3) {
        reduce_mean_hw(x_data, out_data, in_n, in_c, in_h, in_w);
      } else {
        LOG(FATAL) << "invalid dims_!!";
      }
    }
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("reduce_mean");
    op_desc->SetInput("X", {input_});
    op_desc->SetOutput("Out", {output_});
    op_desc->SetAttr("dim", dim_);
    op_desc->SetAttr("keep_dim", keep_dim_);
  }

  void PrepareData() override {
    std::vector<float> data(x_dims_.production());
    for (int i = 0; i < x_dims_.production(); i++) {
      data[i] = i * 1.0;
    }
    SetCommonTensor(input_, x_dims_, data.data());
  }
};

void test_reduce_mean(Place place) {
  std::vector<std::vector<int>> reduce_dim{
      {0}, {1}, {2}, {3}, {0, 1}, {1, 2}, {2, 3}, {-2, -1}};
  for (auto n : {1, 3}) {
    for (auto c : {1, 2}) {
      for (auto h : {1, 3}) {
        for (auto w : {1, 3}) {
          for (bool keep_dim : {false, true}) {
            for (auto dim : reduce_dim) {
              auto x_dims = DDim(std::vector<int64_t>({n, c, h, w}));
              std::unique_ptr<arena::TestCase> tester(
                  new ReduceMeanComputeTester(
                      place, "def", dim, keep_dim, x_dims));
              arena::Arena arena(std::move(tester), place, 2e-5);
              arena.TestPrecision();
            }
          }
        }
      }
    }
  }
}

TEST(ReduceMean, precision) {
// #ifdef LITE_WITH_X86
//   Place place(TARGET(kX86));
// #endif
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  test_reduce_mean(place);
#endif
}

}  // namespace lite
}  // namespace paddle