conv_op.h 5.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
H
HappyAngel 已提交
16
#include <memory>
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#include <string>
#include <vector>
#include "lite/core/kernel.h"
#include "lite/core/op_lite.h"
#include "lite/core/scope.h"
#include "lite/core/tensor.h"
#include "lite/operators/op_params.h"
#include "lite/utils/all.h"

namespace paddle {
namespace lite {
namespace operators {

class ConvOpLite : public OpLite {
 public:
  ConvOpLite() {}

  explicit ConvOpLite(const std::string& type) : OpLite(type) {}

  bool CheckShape() const override;

  bool InferShape() const override;

  // TODO(Superjomn) replace framework::OpDesc with a lite one.
  bool AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) override {
    auto X = op_desc.Input("Input").front();
    auto Filter = op_desc.Input("Filter").front();
    auto Out = op_desc.Output("Output").front();

    param_.x = scope->FindVar(X)->GetMutable<lite::Tensor>();
    param_.filter = scope->FindVar(Filter)->GetMutable<lite::Tensor>();
    param_.output = scope->FindVar(Out)->GetMutable<lite::Tensor>();

    param_.strides = op_desc.GetAttr<std::vector<int>>("strides");
H
HappyAngel 已提交
51
    auto paddings = op_desc.GetAttr<std::vector<int>>("paddings");
Y
Yan Chunwei 已提交
52
    param_.groups = op_desc.GetAttr<int>("groups");
H
HappyAngel 已提交
53 54
    auto dilations = op_desc.GetAttr<std::vector<int>>("dilations");
    param_.dilations = std::make_shared<std::vector<int>>(dilations);
Y
Yan Chunwei 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

    // optional params
    std::vector<std::string> input_arg_names = op_desc.InputArgumentNames();
    if (std::find(input_arg_names.begin(), input_arg_names.end(), "Bias") !=
        input_arg_names.end()) {
      auto bias_arguments = op_desc.Input("Bias");
      if (bias_arguments.size() > 0) {
        auto bias_var = scope->FindVar(bias_arguments.front());
        if (bias_var != nullptr) {
          param_.bias =
              const_cast<lite::Tensor*>(&(bias_var->Get<lite::Tensor>()));
        }
      }
    }
    if (std::find(input_arg_names.begin(),
                  input_arg_names.end(),
                  "ResidualData") != input_arg_names.end()) {
      auto res_data_arguments = op_desc.Input("ResidualData");
      if (res_data_arguments.size() > 0) {
        auto residual_data_var = scope->FindVar(res_data_arguments.front());
        if (residual_data_var != nullptr) {
          param_.residualData = const_cast<lite::Tensor*>(
              &(residual_data_var->Get<lite::Tensor>()));
        }
      }
    }
81 82 83 84 85 86 87

    if (op_desc.HasAttr("with_act") && op_desc.GetAttr<bool>("with_act")) {
      param_.activation_param.has_active = true;
      auto act_type = op_desc.GetAttr<std::string>("act_type");
      if (act_type == "relu") {
        param_.activation_param.active_type = lite_api::ActivationType::kRelu;
        param_.fuse_relu = true;
88 89 90 91
      } else if (act_type == "relu6") {
        param_.activation_param.active_type = lite_api::ActivationType::kRelu6;
        param_.activation_param.Relu_clipped_coef =
            op_desc.GetAttr<float>("fuse_brelu_threshold");  // 6.f
92 93 94 95 96 97 98 99 100
      } else if (act_type == "leaky_relu") {
        param_.activation_param.active_type =
            lite_api::ActivationType::kLeakyRelu;
        param_.activation_param.Leaky_relu_alpha =
            op_desc.GetAttr<float>("leaky_relu_alpha");
      } else {
        CHECK(false)
            << "The fused conv only supports fuse with relu and leaky relu";
      }
Y
Yan Chunwei 已提交
101
    }
102 103 104 105

    if (op_desc.HasAttr("padding_algorithm")) {
      padding_algorithm_ = op_desc.GetAttr<std::string>("padding_algorithm");
    }
Y
Yan Chunwei 已提交
106 107 108 109 110 111 112 113 114 115 116 117
    // For Int8
    if (op_desc.HasAttr("enable_int8")) {
      param_.enable_int8 = op_desc.GetAttr<bool>("enable_int8");
      if (op_desc.HasAttr("input_scale"))
        param_.input_scale = op_desc.GetAttr<float>("input_scale");
      if (op_desc.HasAttr("weight_scale"))
        param_.weight_scale =
            op_desc.GetAttr<std::vector<float>>("weight_scale");
      if (op_desc.HasAttr("output_scale")) {
        param_.output_scale = op_desc.GetAttr<float>("output_scale");
      }
    }
H
HappyAngel 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131

    // 2-pad to 4-pad
    if (paddings.size() == 2L) {
      for (size_t i = 0; i < param_.strides.size(); ++i) {
        int copy_pad = *(paddings.begin() + 2 * i);
        paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
      }
    } else {
      if (paddings.size() != 4L) {
        LOG(FATAL)
            << "Paddings size should be the same or twice as the input size.";
      }
    }
    param_.paddings = std::make_shared<std::vector<int>>(paddings);
Y
Yan Chunwei 已提交
132 133 134 135 136 137 138 139 140
    return true;
  }

  void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); }

  std::string DebugString() const override { return "conv2d"; }

 private:
  mutable ConvParam param_;
141
  std::string padding_algorithm_{""};
Y
Yan Chunwei 已提交
142
};
143 144 145 146 147 148 149
// update padding dilation
void UpdatePaddingAndDilation(std::vector<int>* paddings,
                              std::vector<int>* dilations,
                              const std::vector<int>& strides,
                              const std::string padding_algorithm,
                              const lite::DDim data_dims,
                              const lite::DDim& ksize);
Y
Yan Chunwei 已提交
150 151 152
}  // namespace operators
}  // namespace lite
}  // namespace paddle