beam_search.cc 10.4 KB
Newer Older
Y
Yan Chunwei 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "lite/backends/x86/math/beam_search.h"
Y
Yan Chunwei 已提交
16 17 18
#include <algorithm>
#include <map>
#include "lite/fluid/lod.h"
19

Y
Yan Chunwei 已提交
20 21 22 23
namespace paddle {
namespace lite {
namespace x86 {
namespace math {
24

Y
Yan Chunwei 已提交
25 26
template <typename T>
class BeamSearchFunctor<TARGET(kX86), T> {
27
 public:
Y
Yan Chunwei 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40
  void operator()(const lite::X86Context &context,
                  const lite::Tensor *pre_ids,
                  const lite::Tensor *pre_scores,
                  const lite::Tensor *ids,
                  const lite::Tensor *scores,
                  lite::Tensor *selected_ids,
                  lite::Tensor *selected_scores,
                  lite::Tensor *parent_idx,
                  size_t level,
                  size_t beam_size,
                  int end_id,
                  bool is_accumulated) {
    auto abs_lod = lite::fluid::ToAbsOffset(scores->lod());
41 42
    auto &high_level = abs_lod[level];

Y
Yan Chunwei 已提交
43 44 45 46 47 48 49 50
    auto items = SelectTopBeamSizeItems(pre_ids,
                                        pre_scores,
                                        ids,
                                        scores,
                                        level,
                                        beam_size,
                                        end_id,
                                        is_accumulated);
51
    auto selected_items = ToMap(items, high_level.back());
52
    /*
Y
Yan Chunwei 已提交
53 54 55 56 57 58 59 60 61
    if (FLAGS_v == 3) {
      VLOG(3) << "selected_items:";
      for (size_t i = 0; i < selected_items.size(); ++i) {
        VLOG(3) << "offset: " << i;
        for (auto &item : selected_items[i]) {
          VLOG(3) << item.ToString();
        }
      }
    }
62
    */
63 64 65 66

    PruneEndBeams(pre_ids, abs_lod, &selected_items, level, end_id);
    // calculate the output tensor's height
    size_t num_instances = std::accumulate(
Y
Yan Chunwei 已提交
67 68 69
        std::begin(selected_items),
        std::end(selected_items),
        0,
70 71
        [](size_t a, std::vector<Item> &b) { return a + b.size(); });
    // the output tensor shape should be [num_instances, 1]
Y
Yan Chunwei 已提交
72 73
    // auto dims = framework::make_ddim(
    //     std::vector<int64_t>({static_cast<int>(num_instances), 1}));
74 75
    lite::DDim dims(
        std::vector<int64_t>({static_cast<int>(num_instances), 1L}));
Y
Yan Chunwei 已提交
76

77
    selected_ids->Resize(dims);
Y
Yan Chunwei 已提交
78 79
    auto *selected_ids_data = selected_ids->mutable_data<int64_t>(TARGET(kX86));

80
    selected_scores->Resize(dims);
Y
Yan Chunwei 已提交
81 82
    auto *selected_scores_data =
        selected_scores->mutable_data<int64_t>(TARGET(kX86));
83

Y
Yan Chunwei 已提交
84 85 86 87 88 89 90 91 92 93 94 95
    // auto *selected_ids_data =
    //    selected_ids->mutable_data<int64_t>(dims, platform::CPUPlace());
    // auto *selected_scores_data =
    //    selected_scores->mutable_data<float>(dims, platform::CPUPlace());
    parent_idx->Resize({static_cast<int64_t>(num_instances)});
    auto *parent_idx_data =
        parent_idx ? parent_idx->mutable_data<int>(TARGET(kX86)) : nullptr;
    // auto *parent_idx_data =
    //    parent_idx
    //        ? parent_idx->mutable_data<int>(
    //              {static_cast<int64_t>(num_instances)}, platform::CPUPlace())
    //        : nullptr;
96 97 98 99 100 101 102

    // fill in data
    std::vector<size_t> low_level;
    size_t low_offset = 0;
    for (auto &items : selected_items) {
      low_level.push_back(low_offset);
      for (auto &item : items) {
Y
Yan Chunwei 已提交
103 104 105
        if (parent_idx) {
          parent_idx_data[low_offset] = static_cast<int>(low_level.size() - 1);
        }
106 107 108 109 110 111 112 113
        selected_ids_data[low_offset] = item.id;
        selected_scores_data[low_offset] = item.score;
        low_offset++;
      }
    }
    low_level.push_back(low_offset);

    // fill lod
Y
Yan Chunwei 已提交
114
    lite::LoD lod(2);
115 116
    lod[0].assign(high_level.begin(), high_level.end());
    lod[1].assign(low_level.begin(), low_level.end());
Y
Yan Chunwei 已提交
117 118 119
    // if (!lite::fluid::CheckLoD(lod)) {
    //  //PADDLE_THROW("lod %s is not right", framework::LoDToString(lod));
    //}
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    selected_ids->set_lod(lod);
    selected_scores->set_lod(lod);
  }

  /*
   * The basic items help to sort.
   */
  struct Item {
    Item() {}
    Item(size_t offset, size_t id, float score)
        : offset(offset), id(id), score(score) {}
    // offset in the higher lod level.
    size_t offset;
    // prefix id in the lower lod level.
    // size_t prefix;
    // the candidate id
    size_t id;
    // the corresponding score
    float score;

    inline bool operator<(const Item &in) const {
      return (score < in.score) ||
             ((score == in.score) && (offset < in.offset));
    }

    inline void operator=(const Item &in) {
      offset = in.offset;
      id = in.id;
      score = in.score;
    }
Y
Yan Chunwei 已提交
150 151 152 153 154 155 156 157 158 159

    std::string ToString() {
      std::ostringstream os;
      os << "{";
      os << "offset: " << offset << ", ";
      os << "id: " << id << ", ";
      os << "score: " << score << "";
      os << "}";
      return os.str();
    }
160 161 162 163 164 165 166 167
  };

 protected:
  /*
   * Prune the source sentences all branchs finished, and it is optional.
   * Pruning must one step later than finishing (thus pre_ids is needed here),
   * since the end tokens must be writed out.
   */
Y
Yan Chunwei 已提交
168 169 170 171
  void PruneEndBeams(const lite::Tensor *pre_ids,
                     const lite::LoD &abs_lod,
                     std::vector<std::vector<Item>> *items,
                     size_t lod_level,
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
                     int end_id) {
    auto *pre_ids_data = pre_ids->data<int64_t>();
    auto &high_level = abs_lod[lod_level];
    for (size_t src_idx = 0; src_idx < high_level.size() - 1; ++src_idx) {
      size_t src_prefix_start = high_level[src_idx];
      size_t src_prefix_end = high_level[src_idx + 1];
      bool finish_flag = true;
      for (size_t offset = src_prefix_start; offset < src_prefix_end;
           offset++) {
        for (auto &item : items->at(offset)) {
          if (item.id != static_cast<size_t>(end_id) ||
              pre_ids_data[offset] != end_id) {
            finish_flag = false;
            break;
          }
        }
        if (!finish_flag) break;
      }
      if (finish_flag) {  // all branchs of the beam (source sentence) end and
                          // prune this beam
        for (size_t offset = src_prefix_start; offset < src_prefix_end;
             offset++)
          items->at(offset).clear();
      }
    }
  }

  /*
   * Transform the items into a map whose key is offset, value is the items.
   * NOTE low performance.
   */
  std::vector<std::vector<Item>> ToMap(
      const std::vector<std::vector<Item>> &items, size_t element_num) {
    std::vector<std::vector<Item>> result;
    result.resize(element_num);
    for (auto &entries : items) {
      for (const auto &item : entries) {
        result[item.offset].push_back(item);
      }
    }
    return result;
  }

Y
Yan Chunwei 已提交
215 216
  void Insert(std::vector<Item> *top_beam_ptr,
              const Item &item,
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
              size_t beam_size) {
    std::vector<Item> &top_beam = *top_beam_ptr;

    size_t num_beams = top_beam.size();
    if (num_beams < beam_size) {
      top_beam.resize(num_beams + 1);
      num_beams++;
    } else {
      if (item < top_beam[beam_size - 1]) {
        return;
      }
    }

    for (int k = static_cast<int>(num_beams) - 2; k >= 0; --k) {
      if (top_beam[k] < item) {
        top_beam[k + 1] = top_beam[k];
      } else {
        top_beam[k + 1] = item;
        return;
      }
    }
    top_beam[0] = item;
  }

  /*
   * For each source, select top beam_size records.
   */
  std::vector<std::vector<Item>> SelectTopBeamSizeItems(
Y
Yan Chunwei 已提交
245 246 247 248 249 250 251 252
      const lite::Tensor *pre_ids,
      const lite::Tensor *pre_scores,
      const lite::Tensor *ids,
      const lite::Tensor *scores,
      size_t lod_level,
      size_t beam_size,
      int end_id,
      bool is_accumulated) {
253 254 255
    std::vector<std::vector<Item>> result;

    // find the current candidates
Y
Yan Chunwei 已提交
256
    auto abs_lod = lite::fluid::ToAbsOffset(scores->lod());
257 258 259 260 261 262 263

    auto *pre_ids_data = pre_ids->data<int64_t>();
    auto *pre_scores_data = pre_scores->data<float>();

    auto *ids_data = ids ? ids->data<int64_t>() : nullptr;
    auto *scores_data = scores->data<float>();

Y
Yan Chunwei 已提交
264 265
    // size_t num_seqs = scores->NumElements(lod_level);
    size_t num_seqs = scores->lod()[lod_level].size() - 1;
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    size_t seq_width = 1;
    for (int i = 1; i < scores->dims().size(); i++) {
      seq_width *= scores->dims()[i];
    }

    for (size_t seq_id = 0; seq_id < num_seqs; ++seq_id) {
      size_t seq_offset_start = abs_lod[lod_level][seq_id];
      size_t seq_offset_end = abs_lod[lod_level][seq_id + 1];

      std::vector<Item> top_beam;
      top_beam.reserve(beam_size);

      for (size_t offset = seq_offset_start; offset < seq_offset_end;
           ++offset) {
        auto pre_id = pre_ids_data[offset];
        auto pre_score = pre_scores_data[offset];
        if (pre_id == end_id) {
          // Allocate all probability mass to end_id for finished branchs and
          // the other candidate ids can be ignored.
          Item item(offset, end_id, pre_score);
          Insert(&top_beam, item, beam_size);
        } else {
          size_t index = offset * seq_width;
          for (size_t d = 0; d < seq_width; d++, index++) {
            int64_t id = ids_data ? ids_data[index] : static_cast<int64_t>(d);
            float score = is_accumulated
                              ? scores_data[index]
                              : pre_score + std::log(scores_data[index]);
            Item item(offset, id, score);
            Insert(&top_beam, item, beam_size);
          }
        }
      }

      result.emplace_back(top_beam);
    }
302
    /*
Y
Yan Chunwei 已提交
303 304 305 306 307 308 309 310 311
    if (FLAGS_v == 3) {
      VLOG(3) << "SelectTopBeamSizeItems result size " << result.size();
      for (auto &items : result) {
        VLOG(3) << "item set:";
        for (auto &item : items) {
          VLOG(3) << item.ToString();
        }
      }
    }
312
    */
313 314 315 316
    return result;
  }
};

Y
Yan Chunwei 已提交
317 318 319 320
template class BeamSearchFunctor<TARGET(kX86), int>;
template class BeamSearchFunctor<TARGET(kX86), int64_t>;
template class BeamSearchFunctor<TARGET(kX86), float>;
template class BeamSearchFunctor<TARGET(kX86), double>;
321

Y
Yan Chunwei 已提交
322 323 324 325
}  // namespace math
}  // namespace x86
}  // namespace lite
}  // namespace paddle