depthwise_conv2d_image2d_compute_test.cc 19.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>

#include <iostream>
#include <random>

#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/target_wrapper.h"
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {

template <typename T, int STRIDE_H = 1, int STRIDE_W = 1>
void depth_conv(const T* input_data,
                const lite::DDim& input_dims,
                const T* filter_data,
                const lite::DDim& filter_dims,
                T* output_data,
                const lite::DDim& output_dims) {
  int stride_h = STRIDE_H, stride_w = STRIDE_W;

  int64_t batches = input_dims[0];
  int64_t channels = input_dims[1];
  int64_t h = input_dims[2];
  int64_t w = input_dims[3];

  int64_t num_output = output_dims[1];
  int64_t outh = output_dims[2];
  int64_t outw = output_dims[3];

  int64_t filter_h = filter_dims[2];
  int64_t filter_w = filter_dims[3];

  const int64_t in_batch_size = channels * h * w;
  const int64_t out_batch_size = num_output * outh * outw;

  auto kernel_offset = std::unique_ptr<int[]>(new int[filter_h * filter_w]);
  {
    int p = 0;
    int offset = 0;
    int gap = w - filter_w;
    for (int i = 0; i < filter_h; i++) {
      for (int j = 0; j < filter_w; j++) {
        kernel_offset[p++] = offset;
        offset += 1;
      }
      offset += gap;
    }
  }

  for (int b = 0; b < batches; b++) {
    auto* input_batch_start = input_data + b * in_batch_size;
    auto* output_batch_start = output_data + b * out_batch_size;
    for (int p = 0; p < num_output; p++) {
      float* output_ptr = output_batch_start + p * outh * outw;
      const float* filter_ptr = filter_data + p * filter_h * filter_w;
      const float* input_ptr = input_batch_start + p * h * w;

      for (int i = 0; i < outh; i++) {
        for (int j = 0; j < outw; j++) {
          float sum = 0;
          const float* input_ch_start =
              input_ptr + i * stride_h * w + j * stride_w;

          for (int fh = 0; fh < filter_h; ++fh) {
            for (int fw = 0; fw < filter_w; ++fw) {
              float val = input_ch_start[kernel_offset[fh * filter_w + fw]];
              float w = filter_ptr[fh * filter_w + fw];
              sum += val * w;
            }
          }
          output_ptr[j] = sum;
        }

        output_ptr += outw;
      }
    }
  }
}
int ConvOutputSize(int input_size,
                   int filter_size,
                   int dilation,
                   int pad_left,
                   int pad_right,
                   int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size =
      (input_size + (pad_left + pad_right) - dkernel) / stride + 1;

  return output_size;
}

TEST(depthwise_conv2d_basic, compute) {
  // conv infos
  //  const int ksize = 1;
  const int stride = 1;
  const int pad = 0;
  const int group = 1;
  const int dilation = 1;
  const int fc = 1;
  const int batch_size = 1;
  const int bias_flag = false;
  const bool relu_flag = false;

//  int loop_cnt = 0;

#ifdef LOOP_TEST
  // for (int batch_size = 1; batch_size < 2; ++batch_size) {
  for (int oc = 4; oc < 10; oc += 1) {         // oc = ic
    for (int fw = 3; fw < 10; fw += 2) {       // fh = fw
      for (int ih = fw; ih < 15; ih += 1) {    // ih
        for (int iw = fw; iw < 15; iw += 1) {  // iw
#else
  const int oc = 32;
  const int ih = 112;
  const int iw = 112;
  const int fw = 5;

#endif

          const int fb = oc;
          const int ic = oc;
          const int fh = fw;

          const int oh = ConvOutputSize(ih, fh, dilation, pad, pad, stride);
          const int ow = ConvOutputSize(iw, fw, dilation, pad, pad, stride);

          VLOG(4) << "to get kernel ...";
          auto kernels =
145
              KernelRegistry::Global().Create("depthwise_conv2d",
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
                                              TARGET(kOpenCL),
                                              PRECISION(kFloat),
                                              DATALAYOUT(kImageDefault));
          ASSERT_FALSE(kernels.empty());

          auto kernel = std::move(kernels.front());
          VLOG(4) << "created depthconv2d kernel";

          VLOG(4) << "prepare kernel ------";

          lite::Tensor input, filter, bias, output;
          operators::ConvParam param;
          param.x = &input;
          param.filter = &filter;
          param.output = &output;
          if (bias_flag) {
            param.bias = &bias;
          }
          param.fuse_relu = relu_flag;

          std::vector<int> paddings = {pad, pad, pad, pad};
          std::vector<int> dilations = {dilation, dilation};

          param.paddings = std::make_shared<std::vector<int>>(paddings);
          param.dilations = std::make_shared<std::vector<int>>(dilations);
          param.strides = std::vector<int>{stride, stride};

          std::unique_ptr<KernelContext> context(new KernelContext);
          context->As<OpenCLContext>().InitOnce();

          std::unique_ptr<KernelContext> depth_conv_context(new KernelContext);
          context->As<OpenCLContext>().CopySharedTo(
              &(depth_conv_context->As<OpenCLContext>()));
          kernel->SetContext(std::move(depth_conv_context));

          const DDim& input_dim =
              lite::DDim{std::vector<int64_t>({batch_size, ic, ih, iw})};

          const DDim& filter_dim =
              lite::DDim{std::vector<int64_t>({fb, fc, fh, fw})};
          const DDim& out_dim =
              lite::DDim{std::vector<int64_t>({batch_size, oc, oh, ow})};
          // element wise bias
          const DDim& bias_dim = lite::DDim{std::vector<int64_t>({oc})};

          param.x->Resize(input_dim);
          param.filter->Resize(filter_dim);
          param.output->Resize(out_dim);
          if (bias_flag) {
            param.bias->Resize(bias_dim);
          }

          kernel->SetParam(param);

          size_t input_image_width = iw * ((ic + 3) / 4);
          size_t input_image_height = ih * batch_size;

          size_t out_image_width = ow * ((oc + 3) / 4);
          size_t out_image_height = oh * batch_size;

          size_t bias_image_width = ow * ((oc + 3) / 4);
          size_t bias_image_height = oh * batch_size;

          size_t filter_image_width = fw * ((fb + 3) / 4);
          size_t filter_image_height = fc * fh;

          const size_t cl_image2d_row_pitch{0};
          const size_t cl_image2d_slice_pitch{0};

          std::default_random_engine engine;
          std::uniform_real_distribution<float> gen(-5, 5);

          std::vector<float> input_v(batch_size * ic * ih * iw);
          std::vector<float> filter_v(fb * fc * fh * fw);
          std::vector<float> output_v(batch_size * oc * ih * iw);
          std::vector<float> bias_v(oc);

          VLOG(4) << "gen input and filter ...";

          for (auto& i : input_v) {
            i = gen(engine);
          }
          for (auto& f : filter_v) {
            f = gen(engine);
          }

          VLOG(4) << "after gen input and filter ...";
          VLOG(4) << "input_v.size(): " << input_v.size();
          VLOG(4) << "filter_v.size(): " << filter_v.size();
          VLOG(4) << "output_v.size(): " << output_v.size();
          VLOG(4) << "bias_v.size(): " << bias_v.size();
          VLOG(4) << "input_dim.production(): " << input_dim.production();
          VLOG(4) << "filter_dim.production(): " << filter_dim.production();
          VLOG(4) << "out_dim.production(): " << out_dim.production();
          VLOG(4) << "bias_dim.production(): " << bias_dim.production();
          VLOG(4) << "4 * input_image_height * input_image_width: "
                  << 4 * input_image_height * input_image_width;
          VLOG(4) << "4 * filter_image_width * filter_image_height: "
                  << 4 * filter_image_width * filter_image_height;

          CHECK(input_dim.production() == input_v.size());
          CHECK_LE(input_dim.production(),
                   4 * input_image_height * input_image_width);
          CHECK(filter_dim.production() == filter_v.size());
          CHECK_LE(filter_dim.production(),
                   4 * filter_image_width * filter_image_height);

          paddle::lite::CLImageConverterDefault default_convertor;
          VLOG(4) << "set mapped input  ...";
          std::vector<float> x_image_v(input_image_width * input_image_height *
                                       4);  // 4 : RGBA
          std::vector<float> filter_image_v(
              filter_image_width * filter_image_height * 4);  // 4 : RGBA
          std::vector<float> bias_image_v(bias_image_width * bias_image_height *
                                          4);  // 4 : RGBA
          std::vector<float> out_image_v(out_image_width * out_image_height *
                                         4);  // 4 : RGBA

          default_convertor.NCHWToImage(
              input_v.data(), x_image_v.data(), input_dim);

          VLOG(4) << "set mapped filter  ...";
          paddle::lite::CLImageConverterNWBlock nw_convertor;
          nw_convertor.NCHWToImage(
              filter_v.data(), filter_image_v.data(), filter_dim);

          auto* input_image2d = input.mutable_data<float, cl::Image2D>(
              input_image_width, input_image_height, x_image_v.data());
          auto* filter_image2d = filter.mutable_data<float, cl::Image2D>(
              filter_image_width, filter_image_height, filter_image_v.data());

          if (bias_flag) {
            nw_convertor.NCHWToImage(
                filter_v.data(), filter_image_v.data(), filter_dim);

            for (int i = 0; i < bias_dim.production(); ++i) {
              bias_v[i] = static_cast<int>(gen(engine));
            }
            CLImageConverterFolder folder_convertor;
            folder_convertor.NCHWToImage(
                bias_v.data(), bias_image_v.data(), bias_dim);
            auto* bias_data = bias.mutable_data<float, cl::Image2D>(
                bias_image_width, bias_image_height, bias_image_v.data());
          }

          VLOG(4) << "resize output  ...";
          output.Resize(out_dim);

          // cpu conv basic calc
          lite::Tensor out_ref;
          out_ref.Resize(out_dim);

          VLOG(4) << "prepare kernel ready";

          VLOG(4) << "kernel launch ...";
          kernel->Launch();
          VLOG(4) << "mutable output ...";
          auto* output_image2d = output.mutable_data<float, cl::Image2D>(
              out_image_width, out_image_height);

          auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
          auto* out_ptr = param.output->data<float, cl::Image2D>();
          auto it = wait_list->find(out_ptr);

          if (it != wait_list->end()) {
            VLOG(4) << "--- Find the sync event for the target cl "
                       "tensor. ---";
            auto& event = *(it->second);
            event.wait();
          } else {
            LOG(FATAL) << "Could not find the sync event for the target "
                          "cl tensor.";
          }

          TargetWrapperCL::ImgcpySync(out_image_v.data(),
                                      output.data<float, cl::Image2D>(),
                                      out_image_width,
                                      out_image_height,
                                      cl_image2d_row_pitch,
                                      cl_image2d_slice_pitch,
                                      IoDirection::DtoH);
          DDim out_image_shape =
              default_convertor.InitImageDimInfoWith(output.dims());

          default_convertor.ImageToNCHW(out_image_v.data(),
                                        output_v.data(),
                                        out_image_shape,
                                        output.dims());

          // for (int j = 0; j < input_v.size(); j += 1) {
          //   VLOG(4) << "input_v input[" << j
          //           << "]: " << input_v.data()[j];
          //       std::cout<< j << "  " << input_v.data()[j] << std::endl;
          // }
          // std::cout << std::endl;

          // for (int j = 0; j < output_v.size(); j += 1) {
          //   VLOG(4) << "output_v output_v[" << j
          //           << "]:" << output_v.data()[j];
          //       std::cout << j << "  " << output_v.data()[j] <<
          //       std::endl;
          // }

          VLOG(4) << "mutable_data out_ref_data: ";

          // run cpu ref
          auto* out_ref_data = out_ref.mutable_data<float>(TARGET(kARM));

          VLOG(4) << " conv_basic beigin ..... ";
          depth_conv<float, 1, 1>(input_v.data(),
                                  input.dims(),
                                  filter_v.data(),
                                  filter.dims(),
                                  out_ref_data,
                                  out_dim);
          VLOG(4) << " conv_basic end ..... ";

          VLOG(4) << " input_dim: " << input_dim;
          VLOG(4) << " filter_dim: " << filter_dim;
          const DDim& out_image_dims = lite::DDim{
              std::vector<int64_t>({static_cast<int64_t>(out_image_width),
                                    static_cast<int64_t>(out_image_height)})};

          for (int i = 0; i < out_dim.production(); i++) {
            EXPECT_NEAR(output_v[i], out_ref_data[i], 1e-2);
            if (abs(output_v[i] - out_ref_data[i]) > 1e-2) {
              LOG(FATAL) << "error idx:" << i;
            }
          }

#ifdef LOOP_TEST
        }
      }
    }
  }
#else
// nothing to do.
#endif
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
TEST(depthwise_conv2d_image2d_fp16, compute) {
  LOG(INFO) << "to get kernel ...";
  auto kernels = KernelRegistry::Global().Create("depthwise_conv2d",
                                                 TARGET(kOpenCL),
                                                 PRECISION(kFloat),
                                                 DATALAYOUT(kImageDefault));
  ASSERT_FALSE(kernels.empty());

  auto kernel = std::move(kernels.front());

  LOG(INFO) << "get kernel";
  lite::Tensor input, filter, output;
  operators::ConvParam param;
  param.x = &input;
  param.filter = &filter;
  param.output = &output;
  std::vector<int> paddings = {0, 0};
  param.paddings = std::make_shared<std::vector<int>>(paddings);
  param.strides = std::vector<int>{1, 1};
  std::vector<int> dilations = {1, 1};
  param.dilations = std::make_shared<std::vector<int>>(dilations);

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();

  kernel->SetParam(param);
  std::unique_ptr<KernelContext> dep_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(dep_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(dep_context));

  LOG(INFO) << "kernel ready";
  std::default_random_engine engine;
  std::uniform_real_distribution<float> gen(-5, 5);
  std::vector<float> input_v(1 * 32 * 112 * 112);
  std::vector<float> filter_v(32 * 1 * 3 * 3);
  for (auto& i : input_v) {
    i = gen(engine);
  }
  for (auto& f : filter_v) {
    f = gen(engine);
  }

  LOG(INFO) << "prepare input";
  input.Resize({1, 32, 112, 112});
  CLImageConverterDefault* default_converter = new CLImageConverterDefault();
  DDim input_image_shape =
      default_converter->InitImageDimInfoWith(input.dims());
  LOG(INFO) << "input_image_shape = " << input_image_shape[0] << " "
            << input_image_shape[1];
  std::vector<float> input_image_data(input_image_shape.production() *
                                      4);  // 4 : RGBA
  default_converter->NCHWToImage(
      input_v.data(), input_image_data.data(), input.dims());
  auto* input_image = input.mutable_data<int16_t, cl::Image2D>(
      input_image_shape[0], input_image_shape[1], input_image_data.data());

  LOG(INFO) << "prepare kernel";
  filter.Resize({32, 1, 3, 3});
  CLImageConverterNWBlock* nw_converter = new CLImageConverterNWBlock();
  DDim filter_image_shape = nw_converter->InitImageDimInfoWith(filter.dims());
  LOG(INFO) << "filter_image_shape = " << filter_image_shape[0] << " "
            << filter_image_shape[1];
  std::vector<float> filter_image_data(filter_image_shape.production() *
                                       4);  // 4 : RGBA
  nw_converter->NCHWToImage(
      filter_v.data(), filter_image_data.data(), filter.dims());
  auto* filter_image = filter.mutable_data<int16_t, cl::Image2D>(
      filter_image_shape[0], filter_image_shape[1], filter_image_data.data());

  LOG(INFO) << "launch";
  output.Resize({1, 32, 110, 110});
  DDim output_image_shape =
      default_converter->InitImageDimInfoWith(output.dims());
  LOG(INFO) << "output_image_shape = " << output_image_shape[0] << " "
            << output_image_shape[1];
  auto* output_image = output.mutable_data<int16_t, cl::Image2D>(
      output_image_shape[0], output_image_shape[1]);

  kernel->Launch();

  auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
  auto* out_ptr = param.output->data<int16_t, cl::Image2D>();
  auto it = wait_list->find(out_ptr);
  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    LOG(INFO) << "--- Find the sync event for the target cl tensor. ---";
    auto& event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
    LOG(INFO) << "Could not find the sync event for the target cl tensor.";
  }

  lite::Tensor output_ref;
  output_ref.Resize({1, 32, 110, 110});
  auto* output_ref_data = output_ref.mutable_data<float>(TARGET(kARM));
  depth_conv<float, 1, 1>(input_v.data(),
                          input.dims(),
                          filter_v.data(),
                          filter.dims(),
                          output_ref_data,
                          output_ref.dims());

  const size_t cl_image2d_row_pitch{0};
  const size_t cl_image2d_slice_pitch{0};

  float* output_image_data = new float[output_image_shape.production() * 4];
  TargetWrapperCL::ImgcpySync(output_image_data,
                              output_image,
                              output_image_shape[0],
                              output_image_shape[1],
                              cl_image2d_row_pitch,
                              cl_image2d_slice_pitch,
                              IoDirection::DtoH);

  float* output_data = new float[output_image_shape.production() * 4];
  default_converter->ImageToNCHW(
      output_image_data, output_data, output_image_shape, output.dims());

  LOG(INFO) << "output_data vs output_ref_data";
  for (int i = 0; i < output.dims().production(); i++) {
    EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-4);
    LOG(INFO) << output_data[i] << " " << output_ref_data[i];
  }
}

513 514
}  // namespace lite
}  // namespace paddle
515
USE_LITE_KERNEL(depthwise_conv2d, kOpenCL, kFloat, kImageDefault, image2d);