conv_compute.h 2.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <memory>
#include <string>
#include <vector>
20

21
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include "lite/core/kernel.h"
#include "lite/core/tensor.h"
#include "lite/operators/op_params.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

class ConvCompute
    : public KernelLite<TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)> {
 public:
  using param_t = operators::ConvParam;
  using kernel_t = void (ConvCompute::*)();

  void PrepareForRun() override;

  void Run() override;

 private:
  void GemmlikeConv2d();
  void Conv2d1x1();
  void GemmBatched(cl::Kernel& kernel,
                   const cl::Buffer* x_d,
                   const cl::Buffer* filter_d,
                   const cl::Buffer* bias_d,
                   cl::Buffer* output_d,
                   const int batch_size,
                   const int m,
                   const int n,
                   const int k);
  kernel_t impl_;
  std::unique_ptr<lite::Tensor> col_buffer_{nullptr};
  std::vector<std::string> kernel_func_names_{};
  std::vector<std::string> kernel_func_paths_{};
  std::vector<std::string> build_options_{};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

61 62 63 64 65 66 67 68 69 70 71 72 73
class ConvImageCompute : public KernelLite<TARGET(kOpenCL),
                                           PRECISION(kFloat),
                                           DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::ConvParam;
  using kernel_t = void (ConvImageCompute::*)();

  void PrepareForRun() override;

  void Run() override;

 private:
  void Conv2d1x1();
74
  void Conv2d3x3();
75 76
  void Conv2d5x5();
  void Conv2d7x7();
77 78 79
  void DepthwiseConv2d3x3s1();
  void DepthwiseConv2d3x3();
  void DepthwiseConv2d();
80 81 82 83 84 85 86 87 88

  kernel_t impl_;
  std::vector<std::string> kernel_func_names_{};
  std::vector<std::string> kernel_func_paths_{};
  std::vector<std::string> build_options_{};
  std::shared_ptr<cl::Event> event_{new cl::Event};
  Tensor filter_gpu_image_;
  Tensor bias_gpu_image_;
};
Y
Yan Chunwei 已提交
89 90 91 92
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle