mkl.h 6.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once

#include <cmath>
#include <type_traits>
#include <vector>
20
#include "lite/backends/x86/jit/kernel_base.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#include "lite/utils/paddle_enforce.h"

namespace paddle {
namespace lite {
namespace jit {
namespace more {
namespace mkl {

template <typename T>
void MatMul(const T* a, const T* b, T* c, const matmul_attr_t* attr);

template <typename T>
void VMul(const T* x, const T* y, T* z, int n);

template <typename T>
void VAdd(const T* x, const T* y, T* z, int n);

template <typename T>
void VScal(const T* a, const T* x, T* y, int n);

template <typename T>
void VExp(const T* x, T* y, int n);

template <typename T>
void VSquare(const T* x, T* y, int n);

template <typename T>
void VCopy(const T* x, T* y, int n);

template <typename T>
void VAXPY(T a, const T* x, T* y, int n);

template <typename T>
void VBroadcast(const T* x, T* y, int64_t y_h, int64_t x_len) {
  for (int64_t h = 0; h < y_h; ++h) {
    VCopy(x, y + h * x_len, x_len);
  }
}

template <typename T>
void VSigmoid(const T* x, T* y, int n) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  VExp(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
  }
}

template <typename T>
void VTanh(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * x[i];
  }
  VSigmoid(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
  }
}

template <typename T>
void SeqPool(const T* x, T* y, const seq_pool_attr_t* attr) {
  VCopy<T>(x, y, attr->w);
  for (int h = 1; h != attr->h; ++h) {
    VAXPY<T>(static_cast<T>(1), x + h * attr->w, y, attr->w);
  }
  if (attr->type == SeqPoolType::kAvg || attr->type == SeqPoolType::kSqrt) {
    T scalar = static_cast<T>(1);
    if (attr->type == SeqPoolType::kAvg) {
      scalar = scalar / static_cast<T>(attr->h);
    } else {
      scalar = scalar / std::sqrt(static_cast<T>(attr->h));
    }
    VScal<T>(&scalar, y, y, attr->w);
  }
}

template <typename T>
void EmbSeqPool(const T* table,
                const int64_t* idx,
                T* out,
                const emb_seq_pool_attr_t* attr) {
  PADDLE_ENFORCE_EQ(attr->table_width * attr->index_width, attr->out_width);
  auto check_idx_value_valid = [&](int64_t i) {
    PADDLE_ENFORCE_LT(
        idx[i], attr->table_height, "idx value: %d, i: %d", idx[i], i);
    PADDLE_ENFORCE_GE(idx[i], 0, "idx value: %d, i: %d", idx[i], i);
  };

  for (int64_t w = 0; w != attr->index_width; ++w) {
    check_idx_value_valid(w);
    VCopy<T>(table + idx[w] * attr->table_width,
             out + w * attr->table_width,
             attr->table_width);
  }

  for (int64_t h = 1; h < attr->index_height; ++h) {
    for (int64_t w = 0; w < attr->index_width; ++w) {
      int64_t i = h * attr->index_width + w;
      check_idx_value_valid(i);
      VAXPY<T>(static_cast<T>(1),
               table + idx[i] * attr->table_width,
               out + w * attr->table_width,
               attr->table_width);
    }
  }
}

template <typename T>
void ASum(const T* x, T* res, int n);

template <typename T>
void StrideASum(const T* x, T* res, int n, int stride);

template <typename T>
void StrideScal(const T* a, const T* x, T* y, int n, int stride);

// remain is the product of dimension shapes after the axis dimension
template <typename T>
void Softmax(const T* x, T* y, int n, int bs, int remain = 1) {
  for (int i = 0; i < bs; ++i) {
146
    T entity = x[i * n];
Y
Yan Chunwei 已提交
147
    for (int c = 1; c < n; ++c) {
148
      entity = x[i * n + c] > entity ? x[i * n + c] : entity;
Y
Yan Chunwei 已提交
149 150
    }
    for (int c = 0; c < n; ++c) {
151
      y[i * n + c] = x[i * n + c] - entity;
Y
Yan Chunwei 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    }
  }
  VExp(y, y, n * bs);
  for (int i = 0; i < bs; ++i) {
    T sum;
    if (remain == 1) {
      ASum(&y[i * n], &sum, n);
      sum = static_cast<T>(1) / sum;
      VScal(&sum, &y[i * n], &y[i * n], n);
    } else {
      for (int j = 0; j < remain; ++j) {
        StrideASum(&y[i * n + j], &sum, n, remain);
        sum = static_cast<T>(1) / sum;
        StrideScal(&sum, &y[i * n + j], &y[i * n + j], n, remain);
      }
    }
  }
}

template <typename T>
void Sgd(const T* lr,
         const T* param,
         const T* grad,
         const int64_t* rows,
         T* out,
         const sgd_attr_t* attr) {
  PADDLE_ENFORCE_EQ(attr->param_width, attr->grad_width);
  PADDLE_ENFORCE_LE(attr->selected_rows_size, attr->grad_height);
  T scalar = -lr[0];
  int width = attr->grad_width;
  if (out == param) {
    for (int64_t i = 0; i < attr->selected_rows_size; ++i) {
      auto h_idx = rows[i];
      PADDLE_ENFORCE_LT(h_idx, attr->param_height);
      PADDLE_ENFORCE_GE(h_idx, 0);
      VAXPY(scalar, grad + i * width, out + h_idx * width, width);
    }
  } else {
    for (int64_t i = 0; i < attr->selected_rows_size; ++i) {
      auto h_idx = rows[i];
      PADDLE_ENFORCE_LT(h_idx, attr->param_height);
      PADDLE_ENFORCE_GE(h_idx, 0);
      VScal(&scalar, grad + i * width, out + h_idx * width, width);
      VAdd(param + h_idx * width,
           out + h_idx * width,
           out + h_idx * width,
           width);
    }
  }
}

#define DECLARE_MKL_KERNEL(name)                                              \
  template <typename T>                                                       \
  class name##Kernel : public KernelMore<name##Tuple<T>> {                    \
   public:                                                                    \
    name##Kernel() { this->func = name<T>; }                                  \
    bool CanBeUsed(const typename name##Tuple<T>::attr_type&) const override; \
    const char* ImplType() const override { return "MKL"; }                   \
  }

// ABCMNK
DECLARE_MKL_KERNEL(MatMul);

// XYZN
DECLARE_MKL_KERNEL(VMul);
DECLARE_MKL_KERNEL(VAdd);

// AXYN
DECLARE_MKL_KERNEL(VScal);
DECLARE_MKL_KERNEL(StrideScal);

// XYN
DECLARE_MKL_KERNEL(VExp);
DECLARE_MKL_KERNEL(VSigmoid);
DECLARE_MKL_KERNEL(VTanh);
DECLARE_MKL_KERNEL(VSquare);
DECLARE_MKL_KERNEL(VCopy);

// others
DECLARE_MKL_KERNEL(SeqPool);
DECLARE_MKL_KERNEL(EmbSeqPool);
DECLARE_MKL_KERNEL(Softmax);
DECLARE_MKL_KERNEL(Sgd);
DECLARE_MKL_KERNEL(VBroadcast);

#undef DECLARE_MKL_KERNEL

}  // namespace mkl
}  // namespace more
}  // namespace jit
}  // namespace lite
}  // namespace paddle