mobilenetv2_test.cc 4.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "lite/api/cxx_api.h"
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/api/paddle_use_passes.h"
#include "lite/api/test_helper.h"
#include "lite/core/op_registry.h"

DEFINE_string(optimized_model, "", "optimized_model");
26 27 28 29
DEFINE_int32(N, 1, "input_batch");
DEFINE_int32(C, 3, "input_channel");
DEFINE_int32(H, 224, "input_height");
DEFINE_int32(W, 224, "input_width");
Y
Yan Chunwei 已提交
30 31 32 33 34 35 36 37 38

namespace paddle {
namespace lite {

#ifdef LITE_WITH_ARM
void TestModel(const std::vector<Place>& valid_places,
               const std::string& model_dir = FLAGS_model_dir,
               bool save_model = false) {
  DeviceInfo::Init();
39
  DeviceInfo::Global().SetRunMode(lite_api::LITE_POWER_NO_BIND, FLAGS_threads);
Y
Yan Chunwei 已提交
40 41
  lite::Predictor predictor;

42
  predictor.Build(model_dir, "", "", valid_places);
Y
Yan Chunwei 已提交
43 44

  auto* input_tensor = predictor.GetInput(0);
45 46
  input_tensor->Resize(DDim(
      std::vector<DDim::value_type>({FLAGS_N, FLAGS_C, FLAGS_H, FLAGS_W})));
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
  auto* data = input_tensor->mutable_data<float>();
  auto item_size = input_tensor->dims().production();
  for (int i = 0; i < item_size; i++) {
    data[i] = 1;
  }

  for (int i = 0; i < FLAGS_warmup; ++i) {
    predictor.Run();
  }

  auto start = GetCurrentUS();
  for (int i = 0; i < FLAGS_repeats; ++i) {
    predictor.Run();
  }

  if (save_model) {
    LOG(INFO) << "Save optimized model to " << FLAGS_optimized_model;
    predictor.SaveModel(FLAGS_optimized_model);
  }

67 68
  LOG(INFO) << "input shape(NCHW):" << FLAGS_N << " " << FLAGS_C << " "
            << FLAGS_H << " " << FLAGS_W;
Y
Yan Chunwei 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
  LOG(INFO) << "================== Speed Report ===================";
  LOG(INFO) << "Model: " << model_dir << ", threads num " << FLAGS_threads
            << ", warmup: " << FLAGS_warmup << ", repeats: " << FLAGS_repeats
            << ", spend " << (GetCurrentUS() - start) / FLAGS_repeats / 1000.0
            << " ms in average.";

  std::vector<std::vector<float>> ref;
  // i = 1
  ref.emplace_back(std::vector<float>(
      {0.00017082224, 5.699624e-05,  0.000260885,   0.00016412718,
       0.00034818667, 0.00015230637, 0.00032959113, 0.0014772735,
       0.0009059976,  9.5378724e-05, 5.386537e-05,  0.0006427285,
       0.0070957416,  0.0016094646,  0.0018807327,  0.00010506048,
       6.823785e-05,  0.00012269315, 0.0007806194,  0.00022354358}));
  auto* out = predictor.GetOutput(0);
  const auto* pdata = out->data<float>();
  int step = 50;
#ifdef LITE_WITH_NPU
  ASSERT_EQ(out->dims().production(), 1000);
  double eps = 0.1;
  for (int i = 0; i < ref.size(); ++i) {
    for (int j = 0; j < ref[i].size(); ++j) {
      auto result = pdata[j * step + (out->dims()[1] * i)];
      auto diff = std::fabs((result - ref[i][j]) / ref[i][j]);
      VLOG(3) << diff;
      EXPECT_LT(diff, eps);
    }
  }
#else
  ASSERT_EQ(out->dims().size(), 2);
  ASSERT_EQ(out->dims()[0], 1);
  ASSERT_EQ(out->dims()[1], 1000);
  for (int i = 0; i < ref.size(); ++i) {
    for (int j = 0; j < ref[i].size(); ++j) {
      EXPECT_NEAR(pdata[j * step + (out->dims()[1] * i)], ref[i][j], 1e-6);
    }
  }
#endif
}

#ifdef LITE_WITH_NPU
TEST(MobileNetV2, test_npu) {
  std::vector<Place> valid_places({
      Place{TARGET(kARM), PRECISION(kFloat)},
      Place{TARGET(kNPU), PRECISION(kFloat)},
  });

116
  TestModel(valid_places, FLAGS_model_dir, true /* save_model*/);
Y
Yan Chunwei 已提交
117

118
  TestModel(valid_places, FLAGS_optimized_model, false /* save model */);
Y
Yan Chunwei 已提交
119 120 121 122 123 124 125 126
}
#endif  // LITE_WITH_NPU

TEST(MobileNetV2, test_arm) {
  std::vector<Place> valid_places({
      Place{TARGET(kARM), PRECISION(kFloat)},
  });

127
  TestModel(valid_places);
Y
Yan Chunwei 已提交
128 129 130 131 132
}

#ifdef LITE_WITH_OPENCL
TEST(MobileNetV2, test_opencl) {
  std::vector<Place> valid_places({
133 134 135 136 137
      Place{TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kImageDefault)},
      Place{TARGET(kOpenCL), PRECISION(kFloat), DATALAYOUT(kNCHW)},
      Place{TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kImageDefault)},
      Place{TARGET(kOpenCL), PRECISION(kAny), DATALAYOUT(kNCHW)},
      TARGET(kARM),  // enable kARM CPU kernel when no opencl kernel
Y
Yan Chunwei 已提交
138 139
  });

140
  TestModel(valid_places);
Y
Yan Chunwei 已提交
141 142 143 144 145 146 147
}
#endif  // LITE_WITH_OPENCL

#endif  // LITE_WITH_ARM

}  // namespace lite
}  // namespace paddle