benchmark.md 4.6 KB
Newer Older
J
juncaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
---
layout: post
title: Benchmark 数据
---

可以参考[benchmark_tools](../benchmark_tools),推荐**一键benchmark**

# 测试环境

* 测试模型
    * fp32模型
        * mobilenet_v1
        * mobilenet_v2
        * squeezenet_v1.1
        * mnasnet
        * shufflenet_v2
    
    * int8模型
        * mobilenet_v1
        * mobilenet_v2
        * resnet50

* 测试机器(android ndk ndk-r17c)
   *  骁龙855
      * xiaomi mi9, snapdragon 855 
      * 4xA76(1@2.84GHz + 3@2.4GHz) + 4xA55@1.78GHz


   *  骁龙845
      * xiaomi mi8, 845
      * 2.8GHz(大四核),1.7GHz(小四核)

   *  骁龙835
      * xiaomi mix2, snapdragon 835
      * 2.45GHz(大四核),1.9GHz(小四核)
 
   *  骁龙625
      * oppo R9s, snapdragon625
      * A53 x 8, big core@2.0GHz
 
   * 骁龙653
      * 360 N5, snapdragon 653
      * 4 x A73@2.0GHz + 4 x A53@1.4GHz
 
   * 麒麟970
      * HUAWEI Mate10
 
* 测试说明
    * commit id: 12c129affaacd476e27a0a82b235a9d547d33f0f
    * warmup=10, repeats=30,统计平均时间,单位是ms
    * 当线程数为1时,```DeviceInfo::Global().SetRunMode```设置LITE_POWER_HIGH,否者设置LITE_POWER_NO_BIND
    * 模型的输入图像的维度是{1, 3, 224, 224},输入图像的每一位数值是1
    
# 测试数据

## fp32 模型测试数据

### paddlepaddle model

骁龙855|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----
threads num|1 |2 |4 |1 |2 |4 
mobilenet_v1 |32.19 |18.81 |10.90 |30.92 |18.31 |10.15 
mobilenet_v2 |22.91 |13.75 |8.64 |21.15 |12.79 |7.84 
shufflenet_v2 |4.67 |3.37 |2.65 |4.43 |3.15 |2.66 
squeezenet_v1.1 |25.10 |15.93 |9.68 |23.28 |14.61 |8.71 
mnasnet |21.84 |13.14 |7.96 |23.29 |12.46 |7.48 

骁龙835|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----
threads num|1 |2 |4 |1 |2 |4 
mobilenet_v1 |94.13 |52.17 |30.68 |88.28 |47.58 |26.64 
mobilenet_v2 |61.24 |34.64 |22.36 |56.66 |32.19 |19.63 
shufflenet_v2 |10.87 |6.92 |5.12 |10.41 |6.76 |4.97 
squeezenet_v1.1 |73.61 |42.25 |24.44 |64.87 |38.43 |23.06 
mnasnet |58.22 |33.43 |20.44 |53.43 |30.20 |18.09 

麒麟980|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----
threads num|1 |2 |4 |1 |2 |4 
mobilenet_v1 |55.11 |28.24 |13.27 |34.24 |17.74 |12.41 
mobilenet_v2 |37.03 |19.80 |51.94 |23.64 |12.98 |9.38 
shufflenet_v2 |7.26 |4.94 |15.06 |5.32 |3.33 |2.82 
squeezenet_v1.1 |42.73 |23.66 |57.39 |26.03 |14.53 |13.66 
mnasnet |36.87 |20.15 |46.04 |21.85 |12.06 |8.68 

麒麟970|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----
threads num|1 |2 |4 |1 |2 |4 
mobilenet_v1 |97.80 |52.64 |34.46 |94.51 |49.36 |28.43 
mobilenet_v2 |66.55 |38.52 |23.19 |62.89 |34.93 |21.53 
shufflenet_v2 |13.78 |8.11 |5.93 |11.95 |7.90 |5.91 
squeezenet_v1.1 |77.64 |43.67 |25.72 |69.91 |40.66 |24.62 
mnasnet |61.86 |34.62 |22.68 |59.61 |32.79 |19.56 

## caffe model

骁龙855|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----|
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |32.42 |18.68 |10.86 |30.92 |18.35 |10.07 |
mobilenet_v2 |29.53 |17.76 |10.89 |27.19 |16.53 |9.75 |
shufflenet_v2 |4.61 |3.29 |2.61 |4.36 |3.11 |2.51 |

骁龙835|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----|
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |92.52 |52.34 |30.37 |88.31 |49.75 |27.29 |
mobilenet_v2 |79.50 |45.67 |28.79 |76.13 |44.01 |26.13 |
shufflenet_v2 |10.94 |7.08 |5.16 |10.64 |6.83 |5.01 |

麒麟980|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----|
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |55.36 |28.18 |13.31 |34.42 |17.93 |12.52 |
mobilenet_v2 |49.17 |26.10 |65.49 |30.50 |16.66 |11.72 |
shufflenet_v2 |8.45 |5.00 |15.65 |4.58 |3.14 |2.83 |

麒麟970|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----|
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |97.85 |53.38 |33.85 |94.29 |49.42 |28.29 |
mobilenet_v2 |87.40 |50.25 |31.85 |85.55 |48.11 |28.24 |
shufflenet_v2 |12.16 |8.39 |6.21 |12.21 |8.33 |6.32 |

## 量化模型

骁龙855|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----|
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |14.01 |8.13 |4.32 |36.80 |21.58 |11.12 |
mobilenet_v2 |17.24 |11.55 |7.82 |28.72 |19.08 |12.49 |

骁龙835|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----|
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |56.57 |29.84 |15.24 |60.76 |32.25 |16.66 |
mobilenet_v2 |47.52 |28.18 |19.24 |49.38 |31.10 |22.07 |


骁龙970|armv8 | | |armv7 | | |
----| ---- | ---- | ---- | ----  |----  |----|
threads num|1 |2 |4 |1 |2 |4 |
mobilenet_v1 |60.86 |30.98 |16.31 |65.95 |34.39 |18.68 |
mobilenet_v2 |65.57 |37.31 |20.87 |68.87 |39.39 |24.43 |