conv_kernel.cpp 4.1 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#include "operators/kernel/conv_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvKernel<GPU_CL, float>::Init(ConvParam<GPU_CL> *param) {
L
liuruilong 已提交
24 25 26 27 28
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");

L
liuruilong 已提交
29 30
  param->Filter()->InitCLImage(cl_helper_.CLContext());

L
liuruilong 已提交
31 32 33 34
  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

L
liuruilong 已提交
35 36 37 38 39 40
  DLOG << " init helper: " << &cl_helper_;
  DLOG << " conv kernel add kernel ~ ";
  DLOG << " width of one block: " << param->Filter()->WidthOfOneBlock();
  DLOG << " height of one block: " << param->Filter()->HeightOfOneBlock();
  DLOG << " filter dims: " << param->Filter()->dims();

L
liuruilong 已提交
41 42
  if (param->Filter()->WidthOfOneBlock() == 1 &&
      param->Filter()->HeightOfOneBlock() == 1) {
L
liuruilong 已提交
43 44

    DLOG << " here1 ";
L
liuruilong 已提交
45
    this->cl_helper_.AddKernel("conv_1x1", "conv_add_bn_relu_kernel.cl");
L
liuruilong 已提交
46

L
liuruilong 已提交
47
  } else if (param->Filter()->dims()[1] == 1) {
L
liuruilong 已提交
48 49

    DLOG << " here2 ";
L
liuruilong 已提交
50
    this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_bn_relu_kernel.cl");
L
liuruilong 已提交
51

L
liuruilong 已提交
52 53
  } else if (param->Filter()->WidthOfOneBlock() == 3 &&
             param->Filter()->HeightOfOneBlock() == 3) {
L
liuruilong 已提交
54 55

    DLOG << " here3 ";
L
liuruilong 已提交
56
    this->cl_helper_.AddKernel("conv_3x3", "conv_add_bn_relu_kernel.cl");
L
liuruilong 已提交
57

L
liuruilong 已提交
58 59 60
  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }
L
liuruilong 已提交
61

L
liuruilong 已提交
62 63 64 65 66
  return true;
}

template <>
void ConvKernel<GPU_CL, float>::Compute(const ConvParam<GPU_CL> &param) {
L
liuruilong 已提交
67 68
  DLOG << " Compute helper: " << &cl_helper_;
  DLOG << " begin compute ";
L
liuruilong 已提交
69
  auto kernel = this->cl_helper_.KernelAt(0);
L
liuruilong 已提交
70
  DLOG << " get work size ";
L
liuruilong 已提交
71
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
L
liuruilong 已提交
72
  DLOG << " end work size ";
L
liuruilong 已提交
73 74 75 76
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
L
liuruilong 已提交
77 78 79

  DLOG << " get Input ";

L
liuruilong 已提交
80
  auto filter = param.Filter()->GetCLImage();
L
liuruilong 已提交
81 82 83

  DLOG << " get Filter ";

L
liuruilong 已提交
84
  auto output = param.Output();
L
liuruilong 已提交
85 86 87

  DLOG << " get Output ";

L
liuruilong 已提交
88 89 90 91 92 93 94 95 96
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = param.Input()->CBlock();
  int dilation = param.Dilations()[0];
  int input_width = param.Input()->WidthOfOneBlock();
  int input_height = param.Input()->HeightOfOneBlock();

  cl_int status;

L
liuruilong 已提交
97 98
  DLOG << " begin set kernel arg ";

L
liuruilong 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &output);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);

L
liuruilong 已提交
112 113
  DLOG << " end set kernel arg ";

L
liuruilong 已提交
114 115
  CL_CHECK_ERRORS(status);

L
liuruilong 已提交
116 117
  DLOG << " begin enqueue ";

L
liuruilong 已提交
118 119 120 121
  status =
      clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
                             default_work_size.data(), NULL, 0, NULL, NULL);

L
liuruilong 已提交
122 123
  DLOG << " end enqueue ";

L
liuruilong 已提交
124
  CL_CHECK_ERRORS(status);
L
liuruilong 已提交
125 126 127 128 129 130 131 132
}

template class ConvKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif