box_coder_op.cc 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <bmcompiler_if.h>
#include <user_bmcpu_common.h>
#include <iostream>
#include <string>
#include <vector>
19
#include "lite/core/subgraph_bridge_registry.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {

int BoxCoderConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);

  auto graph = static_cast<Graph*>(ctx);
  auto scope = op->scope();
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto box_var_name = op_info->Input("PriorBox").front();
  auto box = scope->FindVar(box_var_name)->GetMutable<lite::Tensor>();
  auto box_dims = box->dims();
  auto box_var_var_name = op_info->Input("PriorBoxVar").front();
  auto box_var = scope->FindVar(box_var_var_name)->GetMutable<lite::Tensor>();
  auto box_var_dims = box_var->dims();
  auto target_box_var_name = op_info->Input("TargetBox").front();
  auto target_box =
      scope->FindVar(target_box_var_name)->GetMutable<lite::Tensor>();
  auto target_box_dims = target_box->dims();
  auto output_var_name = op_info->Output("OutputBox").front();
  auto output = scope->FindVar(output_var_name)->GetMutable<lite::Tensor>();
  auto output_dims = output->dims();

  std::vector<int32_t> i_box_shape_data(box_dims.size());
  for (size_t i = 0; i < box_dims.size(); i++) {
    i_box_shape_data[i] = static_cast<int32_t>(box_dims[i]);
  }
  std::vector<int32_t> i_box_var_shape_data(box_var_dims.size());
  for (size_t i = 0; i < box_var_dims.size(); i++) {
    i_box_var_shape_data[i] = static_cast<int32_t>(box_var_dims[i]);
  }
  std::vector<int32_t> i_target_box_shape_data(target_box_dims.size());
  for (size_t i = 0; i < target_box_dims.size(); i++) {
    i_target_box_shape_data[i] = static_cast<int32_t>(target_box_dims[i]);
  }
  std::vector<int32_t> i_output_shape_data(output_dims.size());
  for (size_t i = 0; i < output_dims.size(); i++) {
    i_output_shape_data[i] = static_cast<int32_t>(output_dims[i]);
  }
  auto code_type = op_info->GetAttr<std::string>("code_type");
  auto box_normalized = op_info->GetAttr<bool>("box_normalized");
  int32_t axis = 0;
  if (op_info->HasAttr("axis")) {
    axis = op_info->GetAttr<int32_t>("axis");
  }
  std::vector<float> variance;
  if (op_info->HasAttr("variance")) {
    variance = op_info->GetAttr<std::vector<float>>("variance");
  }
76
  int variance_len = variance.size();
77 78 79
  user_cpu_param_t bm_param;
  bm_param.op_type = USER_PADDLE_BOX_CODER;
  bm_param.u.box_coder_param.axis = axis;
80 81 82 83 84 85
  CHECK_LE(variance_len, 2000);
  memset(bm_param.u.box_coder_param.variance, 0, 2000 * sizeof(float));
  memcpy(bm_param.u.box_coder_param.variance,
         &variance[0],
         variance_len * sizeof(float));
  bm_param.u.box_coder_param.variance_len = variance_len;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  bm_param.u.box_coder_param.code_type =
      (code_type == "encode_center_size") ? 0 : 1;
  bm_param.u.box_coder_param.normalized = box_normalized;
  int32_t input_num = 3;
  int32_t output_num = 1;
  int32_t* in_shape[3];
  int32_t in_dim[3];
  const char* in_name[3];
  in_shape[0] = &i_box_shape_data[0];
  in_shape[1] = &i_target_box_shape_data[0];
  in_shape[2] = &i_box_var_shape_data[0];
  in_dim[0] = box_dims.size();
  in_dim[1] = target_box_dims.size();
  in_dim[2] = box_var_dims.size();
  in_name[0] = static_cast<const char*>(box_var_name.c_str());
  in_name[1] = static_cast<const char*>(target_box_var_name.c_str());
  in_name[2] = static_cast<const char*>(box_var_var_name.c_str());
  int32_t* out_shape[1];
  int32_t out_dim[1];
  const char* out_name[1];
  out_shape[0] = &i_output_shape_data[0];
  out_dim[0] = output_dims.size();
  out_name[0] = static_cast<const char*>(output_var_name.c_str());

  add_user_cpu_layer(graph->GetCompilerHandle(),
                     input_num,
                     in_shape,
                     in_dim,
                     in_name,
                     output_num,
                     out_shape,
                     out_dim,
                     out_name,
                     &bm_param,
                     static_cast<int>(sizeof(bm_param)));
  graph->AddNode(output_var_name);
  return SUCCESS;
}

}  // namespace bm
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(box_coder,
                         kBM,
                         paddle::lite::subgraph::bm::BoxCoderConverter);